040899 KU Production Analysis (MA) (2022S)
Prüfungsimmanente Lehrveranstaltung
Labels
GEMISCHT
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 07.02.2022 09:00 bis Mo 21.02.2022 23:59
- Anmeldung von Do 24.02.2022 09:00 bis Fr 25.02.2022 23:59
- Abmeldung bis Mo 14.03.2022 23:59
Details
max. 50 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Montag 07.03. 13:15 - 14:45 Digital
- Montag 14.03. 13:15 - 14:45 Digital
- Montag 21.03. 13:15 - 14:45 Digital
- Montag 28.03. 13:15 - 14:45 Digital
- Montag 04.04. 13:15 - 14:45 Digital
- Montag 25.04. 13:15 - 14:45 Digital
-
Montag
02.05.
13:15 - 14:45
Hörsaal 15 Oskar-Morgenstern-Platz 1 2.Stock
Hörsaal 16 Oskar-Morgenstern-Platz 1 2.Stock - Montag 09.05. 13:15 - 14:45 Digital
- Montag 16.05. 13:15 - 14:45 Digital
- Montag 23.05. 13:15 - 14:45 Digital
- Montag 30.05. 13:15 - 14:45 Digital
- Montag 20.06. 13:15 - 14:45 Digital
- Montag 27.06. 11:30 - 13:00 Hörsaal 12 Oskar-Morgenstern-Platz 1 2.Stock
-
Montag
27.06.
13:15 - 14:45
Hörsaal 5 Oskar-Morgenstern-Platz 1 Erdgeschoß
Hörsaal 9 Oskar-Morgenstern-Platz 1 1.Stock
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Homework (15%), Midterm exam (30%), Endterm exam (35%), Essay (10%), Case study (10%).
Essay and case study submissions will be online via Moodle. The exams will be on-site, if possible.
Examination dates: Midterm - 02.05.2022; Endterm - 27.06.2022
Essay and case study submissions will be online via Moodle. The exams will be on-site, if possible.
Examination dates: Midterm - 02.05.2022; Endterm - 27.06.2022
Mindestanforderungen und Beurteilungsmaßstab
For a positive grade, students have to achieve at least 50 points/percent. There is no minimum requirement per component. The grading is as follows:
87.0% - 100.0%: 1 (very good)
75.0% - 86.9%: 2 (good)
63.0% - 74.9%: 3 (satisfactory)
50.0% - 62.9%: 4 (adequate)
0.0% - 49.9%: 5 (unsatisfactory)
87.0% - 100.0%: 1 (very good)
75.0% - 86.9%: 2 (good)
63.0% - 74.9%: 3 (satisfactory)
50.0% - 62.9%: 4 (adequate)
0.0% - 49.9%: 5 (unsatisfactory)
Prüfungsstoff
Lecture notes, literature excerpts, home assignments and presentation
Literatur
Course material (electronic):
- Course slides
- Book scans* Edward A. Silver, David F. Pyke, Rein Peterson, Inventory Management and Production Planning and Scheduling, 3rd Edition.
* Sipper and Bulfin, Production: Planning, Control and Integration, McGraw-Hill, 1997
* S. Nahmias: Production and Operations Analysis, McGraw-Hill, 2009.
- Course slides
- Book scans* Edward A. Silver, David F. Pyke, Rein Peterson, Inventory Management and Production Planning and Scheduling, 3rd Edition.
* Sipper and Bulfin, Production: Planning, Control and Integration, McGraw-Hill, 1997
* S. Nahmias: Production and Operations Analysis, McGraw-Hill, 2009.
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Do 11.05.2023 11:27
- Disaggregation
- Master Production Scheduling (MPS)
- Material Requirements Planning (MRP)
- Just-in-Time (JIT)
- Load-dependent order release (BOA)
- Single machine scheduling
- Job shop scheduling
- Project scheduling (PERT)
- Advanced Planning and Scheduling Systems (APS)Course Description:
The goal of the course is to provide students with an in-depth coverage of selected topics from production planning and control. By adopting a strongly quantitative, mainly model-driven perspective, the students are introduced to methods and approaches for solving typical problems that arise at different levels of the planning hierarchy. The scope of issues discussed ranges from aggregate planning to detailed scheduling and is illustrated by sample calculations. Links to the area of optimization and related concepts ((meta-)heuristics, exact optimization algorithms, linear and mixed integer programming) are pointed out and critically reviewed, also from a practical point of view.