Universität Wien FIND
Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.

050064 UE Mathematische Basistechniken (2013W)

Prüfungsimmanente Lehrveranstaltung

Zusammenfassung

1 Winiwarter
2 Winiwarter
3 Winiwarter
4 Cenker, CEWebs
5 Cenker, CEWebs
6 Winiwarter
7 Slavova
8 Thorstensen, CEWebs
9 Klausner
10 Wahl

An/Abmeldung

Gruppen

Gruppe 1

max. 25 Teilnehmer*innen
Sprache: Deutsch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Dienstag 08.10. 13:15 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Dienstag 15.10. 13:15 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Dienstag 22.10. 13:15 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Dienstag 29.10. 13:15 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Dienstag 05.11. 13:15 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Dienstag 12.11. 13:15 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Dienstag 19.11. 13:15 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Dienstag 26.11. 13:15 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Dienstag 03.12. 13:15 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Dienstag 10.12. 13:15 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Dienstag 17.12. 13:15 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Dienstag 07.01. 13:15 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Dienstag 14.01. 13:15 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Dienstag 21.01. 13:15 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Dienstag 28.01. 13:15 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG

Ziele, Inhalte und Methode der Lehrveranstaltung

Die Lehrveranstaltung vermittelt die Grundbegriffe in den Bereichen Mengen, Logik und Algebra. Weiters werden die Grundlagen der linearen Algebra und Geometrie sowie deren Anwendungen wie etwa in Grafik und Graphentheorie vermittelt. Die Studierenden erwerben Kompetenzen in der Analyse von informatorischen Fragestellungen mittels Logikkalkülen und Algebra und lernen Algorithmen aus der Linearen Algebra zu verstehen und mit Hilfe entsprechender Softwarewerkzeugen anzuwenden.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Jedes präsentierte Übungsbeispiel wird mit 0 bis 100 Punkten bewertet. Die Note ergibt sich aus der Summe der erzielten Präsentationspunkte: unter 300: 5, 300 bis 399: 4, 400 bis 499: 3, 500 bis 599: 2, ab 600: 1.

Mindestanforderungen und Beurteilungsmaßstab

Ziel dieser Übung ist es, den Stoff der Vorlesung zu vertiefen und anwenden zu lernen. Es wird überprüft, inwieweit das in der Vorlesung Gelernte umgesetzt werden kann. Weiters sollen Unklarheiten in Bezug auf das Verständnis des Stoffes beseitigt werden.

Prüfungsstoff

Als Softwarewerkzeug wird im Rahmen der Übung wxMaxima eingesetzt. Die Übungsbeispiele sind vorzubereiten und auf freiwilliger Basis sowohl ohne als auch mit Hilfe von wxMaxima zu präsentieren.

Literatur

- G. Bärwolff. Höhere Mathematik für Naturwissenschaftler und Ingenieure. Spektrum, 2009.
- M. Precht, K. Voit, R. Kraft. Mathematik 1 für Nichtmathematiker. Oldenbourg, 2010.
- M. Precht, K. Voit, R. Kraft. Mathematik 2 für Nichtmathematiker. Oldenbourg, 2005.
- M. Bachmaier, R. Kraft, M. Precht. Aufgabensammlung mit Lösungen zur Mathematik für Nichtmathematiker. Oldenbourg, 2006.
- D. Hachenberger. Mathematik für Informatiker. Pearson Studium, 2008.
- B. Kreußler, G. Pfister. Mathematik für Informatiker. eXamen.press, Springer-Verlag, 2009.

Gruppe 2

max. 25 Teilnehmer*innen
Sprache: Deutsch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Freitag 11.10. 13:15 - 14:45 PC-Unterrichtsraum 3, Währinger Straße 29 1.OG
Freitag 18.10. 13:15 - 14:45 PC-Unterrichtsraum 3, Währinger Straße 29 1.OG
Freitag 25.10. 13:15 - 14:45 PC-Unterrichtsraum 3, Währinger Straße 29 1.OG
Freitag 08.11. 13:15 - 14:45 PC-Unterrichtsraum 3, Währinger Straße 29 1.OG
Freitag 15.11. 13:15 - 14:45 PC-Unterrichtsraum 3, Währinger Straße 29 1.OG
Freitag 22.11. 13:15 - 14:45 PC-Unterrichtsraum 3, Währinger Straße 29 1.OG
Freitag 29.11. 13:15 - 14:45 PC-Unterrichtsraum 3, Währinger Straße 29 1.OG
Freitag 06.12. 13:15 - 14:45 PC-Unterrichtsraum 3, Währinger Straße 29 1.OG
Freitag 13.12. 13:15 - 14:45 PC-Unterrichtsraum 3, Währinger Straße 29 1.OG
Freitag 10.01. 13:15 - 14:45 PC-Unterrichtsraum 3, Währinger Straße 29 1.OG
Freitag 17.01. 13:15 - 14:45 PC-Unterrichtsraum 3, Währinger Straße 29 1.OG
Freitag 24.01. 13:15 - 14:45 PC-Unterrichtsraum 3, Währinger Straße 29 1.OG
Freitag 31.01. 13:15 - 14:45 PC-Unterrichtsraum 3, Währinger Straße 29 1.OG

Ziele, Inhalte und Methode der Lehrveranstaltung

Die Lehrveranstaltung vermittelt die Grundbegriffe in den Bereichen Mengen, Logik und Algebra. Weiters werden die Grundlagen der linearen Algebra und Geometrie sowie deren Anwendungen wie etwa in Grafik und Graphentheorie vermittelt. Die Studierenden erwerben Kompetenzen in der Analyse von informatorischen Fragestellungen mittels Logikkalkülen und Algebra und lernen Algorithmen aus der Linearen Algebra zu verstehen und mit Hilfe entsprechender Softwarewerkzeugen anzuwenden.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Jedes präsentierte Übungsbeispiel wird mit 0 bis 100 Punkten bewertet. Die Note ergibt sich aus der Summe der erzielten Präsentationspunkte: unter 300: 5, 300 bis 399: 4, 400 bis 499: 3, 500 bis 599: 2, ab 600: 1.

Mindestanforderungen und Beurteilungsmaßstab

Ziel dieser Übung ist es, den Stoff der Vorlesung zu vertiefen und anwenden zu lernen. Es wird überprüft, inwieweit das in der Vorlesung Gelernte umgesetzt werden kann. Weiters sollen Unklarheiten in Bezug auf das Verständnis des Stoffes beseitigt werden.

Prüfungsstoff

Als Softwarewerkzeug wird im Rahmen der Übung wxMaxima eingesetzt. Die Übungsbeispiele sind vorzubereiten und auf freiwilliger Basis sowohl ohne als auch mit Hilfe von wxMaxima zu präsentieren.

Literatur

- G. Bärwolff. Höhere Mathematik für Naturwissenschaftler und Ingenieure. Spektrum, 2009.
- M. Precht, K. Voit, R. Kraft. Mathematik 1 für Nichtmathematiker. Oldenbourg, 2010.
- M. Precht, K. Voit, R. Kraft. Mathematik 2 für Nichtmathematiker. Oldenbourg, 2005.
- M. Bachmaier, R. Kraft, M. Precht. Aufgabensammlung mit Lösungen zur Mathematik für Nichtmathematiker. Oldenbourg, 2006.
- D. Hachenberger. Mathematik für Informatiker. Pearson Studium, 2008.
- B. Kreußler, G. Pfister. Mathematik für Informatiker. eXamen.press, Springer-Verlag, 2009.

Gruppe 3

max. 25 Teilnehmer*innen
Sprache: Deutsch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Dienstag 08.10. 11:30 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Dienstag 15.10. 11:30 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Dienstag 22.10. 11:30 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Dienstag 29.10. 11:30 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Dienstag 05.11. 11:30 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Dienstag 12.11. 11:30 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Dienstag 19.11. 11:30 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Dienstag 26.11. 11:30 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Dienstag 03.12. 11:30 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Dienstag 10.12. 11:30 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Dienstag 17.12. 11:30 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Dienstag 07.01. 11:30 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Dienstag 14.01. 11:30 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Dienstag 21.01. 11:30 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Dienstag 28.01. 11:30 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG

Ziele, Inhalte und Methode der Lehrveranstaltung

Die Lehrveranstaltung vermittelt die Grundbegriffe in den Bereichen Mengen, Logik und Algebra. Weiters werden die Grundlagen der linearen Algebra und Geometrie sowie deren Anwendungen wie etwa in Grafik und Graphentheorie vermittelt. Die Studierenden erwerben Kompetenzen in der Analyse von informatorischen Fragestellungen mittels Logikkalkülen und Algebra und lernen Algorithmen aus der Linearen Algebra zu verstehen und mit Hilfe entsprechender Softwarewerkzeugen anzuwenden.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Jedes präsentierte Übungsbeispiel wird mit 0 bis 100 Punkten bewertet. Die Note ergibt sich aus der Summe der erzielten Präsentationspunkte: unter 300: 5, 300 bis 399: 4, 400 bis 499: 3, 500 bis 599: 2, ab 600: 1.

Mindestanforderungen und Beurteilungsmaßstab

Ziel dieser Übung ist es, den Stoff der Vorlesung zu vertiefen und anwenden zu lernen. Es wird überprüft, inwieweit das in der Vorlesung Gelernte umgesetzt werden kann. Weiters sollen Unklarheiten in Bezug auf das Verständnis des Stoffes beseitigt werden.

Prüfungsstoff

Als Softwarewerkzeug wird im Rahmen der Übung wxMaxima eingesetzt. Die Übungsbeispiele sind vorzubereiten und auf freiwilliger Basis sowohl ohne als auch mit Hilfe von wxMaxima zu präsentieren.

Literatur

- G. Bärwolff. Höhere Mathematik für Naturwissenschaftler und Ingenieure. Spektrum, 2009.
- M. Precht, K. Voit, R. Kraft. Mathematik 1 für Nichtmathematiker. Oldenbourg, 2010.
- M. Precht, K. Voit, R. Kraft. Mathematik 2 für Nichtmathematiker. Oldenbourg, 2005.
- M. Bachmaier, R. Kraft, M. Precht. Aufgabensammlung mit Lösungen zur Mathematik für Nichtmathematiker. Oldenbourg, 2006.
- D. Hachenberger. Mathematik für Informatiker. Pearson Studium, 2008.
- B. Kreußler, G. Pfister. Mathematik für Informatiker. eXamen.press, Springer-Verlag, 2009.

Gruppe 4

max. 25 Teilnehmer*innen
Sprache: Deutsch
Lernplattform: CEWebs

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Montag 07.10. 11:30 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 14.10. 11:30 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 21.10. 11:30 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 28.10. 11:30 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 04.11. 11:30 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 11.11. 11:30 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 18.11. 11:30 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 25.11. 11:30 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 02.12. 11:30 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 09.12. 11:30 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 16.12. 11:30 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 13.01. 11:30 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 20.01. 11:30 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 27.01. 11:30 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG

Ziele, Inhalte und Methode der Lehrveranstaltung

Mengen
Logik
Algebra
Lineare Algebra und Geometrie
Matrizen
Graphentheorie

Das Modul vermittelt die Grundbegriffe in den Bereichen Mengen, Logik und Algebra.
Weiters werden die Grundlagen der linearen Algebra und Geometrie sowie deren
Anwendungen wie etwa in Grafik und Graphentheorie vermittelt. Die Studierenden erwerben Kompetenzen in der Analyse von informatischen Fragestellungen mittels Logikkalkülen und Algebra und lernen Algorithmen aus der Linearen Algebra zu verstehen und mit Hilfe entsprechender Softwarewerkzeugen anzuwenden.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Mitarbeit, Anwesenheit, Teilnahme am Forum, Abgaben der Arbeiten via CEWebS. Näheres unter http://www.pri.univie.ac.at/inf-mbt/ws12

Mindestanforderungen und Beurteilungsmaßstab

Ziel dieser Übung ist es, den Stoff der Vorlesung zu vertiefen und anwenden zu lernen. Es wird überprüft, inwieweit das in der Vorlesung Gelernte umgesetzt werden kann. Weiters sollen Unklarheiten in Bezug auf das Verständnis des Stoffes beseitigt werden.

Prüfungsstoff

Blended Learning: In Face-to-Face (F2F) Phasen werden Beispiele besprochen, die auf der Lernplattform CEWebS zur Verfügung gestellt werden. Diese sind zu rechnen und über die Lernplattform abzugeben. Zur Besprechung der Beispiele dient auch ein betreutes Forum. In weiteren F2F Phasen werden aufgetretene Probleme bei abgegebenen Beispielen besprochen und gelöst. Weiters wird via Lernplattform Feedback zu den Abgaben von Studierenden gegeben.

Literatur

Gruppe 5

max. 25 Teilnehmer*innen
Sprache: Deutsch
Lernplattform: CEWebs

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Montag 07.10. 13:15 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 14.10. 13:15 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 21.10. 13:15 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 28.10. 13:15 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 04.11. 13:15 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 11.11. 13:15 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 18.11. 13:15 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 25.11. 13:15 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 02.12. 13:15 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 09.12. 13:15 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 16.12. 13:15 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 13.01. 13:15 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 20.01. 13:15 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 27.01. 13:15 - 14:45 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG

Ziele, Inhalte und Methode der Lehrveranstaltung

Mengen
Logik
Algebra
Lineare Algebra und Geometrie
Matrizen
Graphentheorie

Das Modul vermittelt die Grundbegriffe in den Bereichen Mengen, Logik und Algebra.
Weiters werden die Grundlagen der linearen Algebra und Geometrie sowie deren
Anwendungen wie etwa in Grafik und Graphentheorie vermittelt. Die Studierenden erwerben Kompetenzen in der Analyse von informatischen Fragestellungen mittels Logikkalkülen und Algebra und lernen Algorithmen aus der Linearen Algebra zu verstehen und mit Hilfe entsprechender Softwarewerkzeugen anzuwenden.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Mitarbeit, Anwesenheit, Teilnahme am Forum, Abgaben der Arbeiten via CEWebS. Näheres unter http://www.pri.univie.ac.at/inf-mbt/ws12

Mindestanforderungen und Beurteilungsmaßstab

Ziel dieser Übung ist es, den Stoff der Vorlesung zu vertiefen und anwenden zu lernen. Es wird überprüft, inwieweit das in der Vorlesung Gelernte umgesetzt werden kann. Weiters sollen Unklarheiten in Bezug auf das Verständnis des Stoffes beseitigt werden.

Prüfungsstoff

Blended Learning: In Face-to-Face (F2F) Phasen werden Beispiele besprochen, die auf der Lernplattform CEWebS zur Verfügung gestellt werden. Diese sind zu rechnen und über die Lernplattform abzugeben. Zur Besprechung der Beispiele dient auch ein betreutes Forum. In weiteren F2F Phasen werden aufgetretene Probleme bei abgegebenen Beispielen besprochen und gelöst. Weiters wird via Lernplattform Feedback zu den Abgaben von Studierenden gegeben.

Literatur

Gruppe 6

max. 25 Teilnehmer*innen
Sprache: Deutsch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Freitag 11.10. 11:30 - 13:00 PC-Unterrichtsraum 3, Währinger Straße 29 1.OG
Freitag 18.10. 11:30 - 13:00 PC-Unterrichtsraum 3, Währinger Straße 29 1.OG
Freitag 25.10. 11:30 - 13:00 PC-Unterrichtsraum 3, Währinger Straße 29 1.OG
Freitag 08.11. 11:30 - 13:00 PC-Unterrichtsraum 3, Währinger Straße 29 1.OG
Freitag 15.11. 11:30 - 13:00 PC-Unterrichtsraum 3, Währinger Straße 29 1.OG
Freitag 22.11. 11:30 - 13:00 PC-Unterrichtsraum 3, Währinger Straße 29 1.OG
Freitag 29.11. 11:30 - 13:00 PC-Unterrichtsraum 3, Währinger Straße 29 1.OG
Freitag 06.12. 11:30 - 13:00 PC-Unterrichtsraum 3, Währinger Straße 29 1.OG
Freitag 13.12. 11:30 - 13:00 PC-Unterrichtsraum 3, Währinger Straße 29 1.OG
Freitag 10.01. 11:30 - 13:00 PC-Unterrichtsraum 3, Währinger Straße 29 1.OG
Freitag 17.01. 11:30 - 13:00 PC-Unterrichtsraum 3, Währinger Straße 29 1.OG
Freitag 24.01. 11:30 - 13:00 PC-Unterrichtsraum 3, Währinger Straße 29 1.OG
Freitag 31.01. 11:30 - 13:00 PC-Unterrichtsraum 3, Währinger Straße 29 1.OG

Ziele, Inhalte und Methode der Lehrveranstaltung

Die Lehrveranstaltung vermittelt die Grundbegriffe in den Bereichen Mengen, Logik und Algebra. Weiters werden die Grundlagen der linearen Algebra und Geometrie sowie deren Anwendungen wie etwa in Grafik und Graphentheorie vermittelt. Die Studierenden erwerben Kompetenzen in der Analyse von informatorischen Fragestellungen mittels Logikkalkülen und Algebra und lernen Algorithmen aus der Linearen Algebra zu verstehen und mit Hilfe entsprechender Softwarewerkzeugen anzuwenden.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Jedes präsentierte Übungsbeispiel wird mit 0 bis 100 Punkten bewertet. Die Note ergibt sich aus der Summe der erzielten Präsentationspunkte: unter 300: 5, 300 bis 399: 4, 400 bis 499: 3, 500 bis 599: 2, ab 600: 1.

Mindestanforderungen und Beurteilungsmaßstab

Ziel dieser Übung ist es, den Stoff der Vorlesung zu vertiefen und anwenden zu lernen. Es wird überprüft, inwieweit das in der Vorlesung Gelernte umgesetzt werden kann. Weiters sollen Unklarheiten in Bezug auf das Verständnis des Stoffes beseitigt werden.

Prüfungsstoff

Als Softwarewerkzeug wird im Rahmen der Übung wxMaxima eingesetzt. Die Übungsbeispiele sind vorzubereiten und auf freiwilliger Basis sowohl ohne als auch mit Hilfe von wxMaxima zu präsentieren.

Literatur

- G. Bärwolff. Höhere Mathematik für Naturwissenschaftler und Ingenieure. Spektrum, 2009.
- M. Precht, K. Voit, R. Kraft. Mathematik 1 für Nichtmathematiker. Oldenbourg, 2010.
- M. Precht, K. Voit, R. Kraft. Mathematik 2 für Nichtmathematiker. Oldenbourg, 2005.
- M. Bachmaier, R. Kraft, M. Precht. Aufgabensammlung mit Lösungen zur Mathematik für Nichtmathematiker. Oldenbourg, 2006.
- D. Hachenberger. Mathematik für Informatiker. Pearson Studium, 2008.
- B. Kreußler, G. Pfister. Mathematik für Informatiker. eXamen.press, Springer-Verlag, 2009.

Gruppe 7

max. 25 Teilnehmer*innen
Sprache: Deutsch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Montag 07.10. 16:45 - 18:15 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 14.10. 16:45 - 18:15 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 21.10. 16:45 - 18:15 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 28.10. 16:45 - 18:15 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 04.11. 16:45 - 18:15 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 11.11. 16:45 - 18:15 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 18.11. 16:45 - 18:15 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 25.11. 16:45 - 18:15 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 02.12. 16:45 - 18:15 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 09.12. 16:45 - 18:15 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 16.12. 16:45 - 18:15 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 13.01. 16:45 - 18:15 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 20.01. 16:45 - 18:15 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Montag 27.01. 16:45 - 18:15 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG

Ziele, Inhalte und Methode der Lehrveranstaltung

Mengen

Logik

Algebra

Lineare Algebra und Geometrie

Matrizen

Graphentheorie

Das Modul vermittelt die Grundbegriffe in den Bereichen Mengen, Logik und Algebra.

Weiters werden die Grundlagen der linearen Algebra und Geometrie sowie deren

Anwendungen wie etwa in Grafik und Graphentheorie vermittelt. Die Studierenden erwerben Kompetenzen in der Analyse von informatischen Fragestellungen mittels Logikkalkülen und Algebra und lernen Algorithmen aus der Linearen Algebra zu verstehen und mit Hilfe entsprechender Softwarewerkzeugen anzuwenden.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Mitarbeit, Anwesenheit, Teilnahme am Forum, Abgaben der Arbeiten via CEWebS. Näheres unter http://www.pri.univie.ac.at/courses/inf-mbt/_ue

Mindestanforderungen und Beurteilungsmaßstab

Ziel dieser Übung ist es, den Stoff der Vorlesung zu vertiefen und anwenden zu lernen. Es wird überprüft, inwieweit das in der Vorlesung Gelernte umgesetzt werden kann. Weiters sollen Unklarheiten in Bezug auf das Verständnis des Stoffes beseitigt werden.

Prüfungsstoff

Blended Learning: In Face-to-Face (F2F) Phasen werden Beispiele besprochen, die auf der Lernplattform CEWebS zur Verfügung gestellt werden. Diese sind zu rechnen und über die Lernplattform abzugeben. Zur Besprechung der Beispiele dient auch ein betreutes Forum. In weiteren F2F Phasen werden aufgetretene Probleme bei abgegebenen Beispielen besprochen und gelöst. Weiters wird via Lernplattform Feedback zu den Abgaben von Studierenden gegeben.

Literatur

Gruppe 8

max. 25 Teilnehmer*innen
Sprache: Deutsch
Lernplattform: CEWebs

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Freitag 18.10. 16:45 - 18:15 Seminarraum 7, Währinger Straße 29 1.OG
Freitag 25.10. 16:45 - 18:15 Seminarraum 7, Währinger Straße 29 1.OG
Freitag 08.11. 16:45 - 18:15 Seminarraum 7, Währinger Straße 29 1.OG
Freitag 15.11. 16:45 - 18:15 Seminarraum 7, Währinger Straße 29 1.OG
Freitag 22.11. 16:45 - 18:15 Seminarraum 7, Währinger Straße 29 1.OG
Freitag 29.11. 16:45 - 18:15 Seminarraum 7, Währinger Straße 29 1.OG
Freitag 06.12. 16:45 - 18:15 Seminarraum 7, Währinger Straße 29 1.OG
Freitag 13.12. 16:45 - 18:15 Seminarraum 7, Währinger Straße 29 1.OG
Freitag 10.01. 16:45 - 18:15 Seminarraum 7, Währinger Straße 29 1.OG
Freitag 17.01. 16:45 - 18:15 Seminarraum 7, Währinger Straße 29 1.OG
Freitag 24.01. 16:45 - 18:15 Seminarraum 7, Währinger Straße 29 1.OG
Freitag 31.01. 16:45 - 18:15 Seminarraum 7, Währinger Straße 29 1.OG

Ziele, Inhalte und Methode der Lehrveranstaltung

Mengen

Logik

Algebra

Lineare Algebra und Geometrie

Matrizen

Graphentheorie

Das Modul vermittelt die Grundbegriffe in den Bereichen Mengen, Logik und Algebra.

Weiters werden die Grundlagen der linearen Algebra und Geometrie sowie deren

Anwendungen wie etwa in Grafik und Graphentheorie vermittelt. Die Studierenden erwerben Kompetenzen in der Analyse von informatischen Fragestellungen mittels Logikkalkülen und Algebra und lernen Algorithmen aus der Linearen Algebra zu verstehen und mit Hilfe entsprechender Softwarewerkzeugen anzuwenden.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Mitarbeit, Anwesenheit, Teilnahme am Forum, Abgaben der Arbeiten via CEWebS. Näheres unter http://www.pri.univie.ac.at/courses/inf-mbt/_ue

Mindestanforderungen und Beurteilungsmaßstab

Ziel dieser Übung ist es, den Stoff der Vorlesung zu vertiefen und anwenden zu lernen. Es wird überprüft, inwieweit das in der Vorlesung Gelernte umgesetzt werden kann. Weiters sollen Unklarheiten in Bezug auf das Verständnis des Stoffes beseitigt werden.

Prüfungsstoff

Blended Learning: In Face-to-Face (F2F) Phasen werden Beispiele besprochen, die auf der Lernplattform CEWebS zur Verfügung gestellt werden. Diese sind zu rechnen und über die Lernplattform abzugeben. Zur Besprechung der Beispiele dient auch ein betreutes Forum. In weiteren F2F Phasen werden aufgetretene Probleme bei abgegebenen Beispielen besprochen und gelöst. Weiters wird via Lernplattform Feedback zu den Abgaben von Studierenden gegeben.

Literatur

Gruppe 9

Vorbesprechung:
Sa 19.10. 9-10 PC-Unterrichtsraum 2, Währinger Str. 29, 1. OG

max. 25 Teilnehmer*innen
Sprache: Deutsch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Samstag 23.11. 10:00 - 15:00 PC-Unterrichtsraum 3, Währinger Straße 29 1.OG
Samstag 07.12. 14:15 - 19:15 PC-Unterrichtsraum 3, Währinger Straße 29 1.OG
Samstag 18.01. 10:00 - 15:00 PC-Unterrichtsraum 3, Währinger Straße 29 1.OG

Ziele, Inhalte und Methode der Lehrveranstaltung

Mengen
Logik
Algebra
Lineare Algebra und Geometrie
Matrizen
Graphentheorie

Das Modul vermittelt die Grundbegriffe in den Bereichen Mengen, Logik und Algebra.
Weiters werden die Grundlagen der linearen Algebra und Geometrie sowie deren
Anwendungen wie etwa in Grafik und Graphentheorie vermittelt. Die Studierenden erwerben Kompetenzen in der Analyse von informatischen Fragestellungen mittels Logikkalkülen und Algebra und lernen Algorithmen aus der Linearen Algebra zu verstehen und mit Hilfe entsprechender Softwarewerkzeugen anzuwenden.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Tafelpräsentation, Mitarbeit, Anwesenheit.

Mindestanforderungen und Beurteilungsmaßstab

Ziel dieser Übung ist es, den Stoff der Vorlesung zu vertiefen und anwenden zu lernen. Es wird überprüft, inwieweit das in der Vorlesung Gelernte umgesetzt werden kann. Weiters sollen Unklarheiten in Bezug auf das Verständnis des Stoffes beseitigt werden.

Prüfungsstoff

Beispiele werden zu Hause vorbereitet (in Maxima und/oder händisch) und in der Stunde an der Tafel bzw. am Präsentations-PC vorgeführt. Dabei werden etwaige Fragen besprochen.

Literatur

G. Teschl, S. Teschl. Mathematik für Informatiker: Band 1: Diskrete Mathematik und Lineare Algebra. Springer, 2007.
G. Teschl, S. Teschl. Mathematik für Informatiker: Band 2: Analysis Und Statistik. Springer, 2006.
M. Precht, K. Voit, R. Kraft. Mathematik 1 für Nichtmathematiker. Oldenbourg, 2006.
M. Precht, K. Voit, R. Kraft. Mathematik 2 für Nichtmathematiker. Oldenbourg, 2005.
M. Bachmaier, R. Kraft, M. Precht. Aufgabensammlung mit Lösungen zur Mathematik für Nichtmathematiker. Oldenbourg, 2006.
D. Hachenberger. Mathematik für Informatiker. Pearson Studium, 2008.
M. Scherfner, T. Volland. Analysis I für das erste Semester. Pearson Studium, 2008.

Gruppe 10

max. 25 Teilnehmer*innen
Sprache: Deutsch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Samstag 19.10. 09:00 - 10:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Samstag 23.11. 09:00 - 14:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Samstag 14.12. 14:15 - 19:15 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Samstag 18.01. 09:00 - 14:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG

Ziele, Inhalte und Methode der Lehrveranstaltung

Mengen

Logik

Algebra

Lineare Algebra und Geometrie

Matrizen

Graphentheorie

Das Modul vermittelt die Grundbegriffe in den Bereichen Mengen, Logik und Algebra. Weiters werden die Grundlagen der linearen Algebra und Geometrie sowie deren Anwendungen wie etwa in Grafik und Graphentheorie vermittelt. Die Studierenden erwerben Kompetenzen in der Analyse von informatischen Fragestellungen mittels Logikkalkülen und Algebra und lernen Algorithmen aus der Linearen Algebra zu verstehen und mit Hilfe entsprechender Softwarewerkzeugen anzuwenden.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Jedes präsentierte Übungsbeispiel wird mit 0 bis 100 Punkten bewertet. Die Note ergibt sich aus der Summe der erzielten Präsentationspunkte: unter 300: 5, 300 bis 399: 4, 400 bis 499: 3, 500 bis 599: 2, ab 600: 1.

Mindestanforderungen und Beurteilungsmaßstab

Ziel dieser Übung ist es, den Stoff der Vorlesung zu vertiefen und anwenden zu lernen. Es wird überprüft, inwieweit das in der Vorlesung Gelernte umgesetzt werden kann. Weiters sollen Unklarheiten in Bezug auf das Verständnis des Stoffes beseitigt werden.

Prüfungsstoff

Als Softwarewerkzeug wird im Rahmen der Übung Maxima eingesetzt. Die Übungsblätter mit den Übungsbeispielen sind über die persönliche Webpage erhältlich. Die Beispiele sind vorzubereiten und auf freiwilliger Basis sowohl ohne als auch mit Hilfe der Software zu präsentieren.

Literatur


Zuordnung im Vorlesungsverzeichnis

Letzte Änderung: Fr 31.08.2018 08:48