051130 VO Einführende Statistik (2020W)
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
Details
Sprache: Deutsch
Prüfungstermine
- Mittwoch 10.02.2021 09:45 - 13:00 Audimax Zentrum für Translationswissenschaft, Gymnasiumstraße 50
-
Donnerstag
04.03.2021
15:00 - 18:10
Audimax Zentrum für Translationswissenschaft, Gymnasiumstraße 50
Seminarraum 3 ZfT Philippovichgasse 11, EG - Freitag 07.05.2021 16:45 - 20:00 Hörsaal 1, Währinger Straße 29 1.UG
- Freitag 14.05.2021 15:00 - 18:15 Hörsaal 1, Währinger Straße 29 1.UG
- Freitag 21.05.2021
- Donnerstag 17.06.2021 15:00 - 18:15 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Montag 05.10. 18:30 - 21:00 Hörsaal 1, Währinger Straße 29 1.UG
- Montag 12.10. 18:30 - 21:00 Hörsaal 1, Währinger Straße 29 1.UG
- Montag 19.10. 18:30 - 21:00 Hörsaal 1, Währinger Straße 29 1.UG
- Montag 09.11. 18:30 - 21:00 Hörsaal 1, Währinger Straße 29 1.UG
- Montag 16.11. 18:30 - 21:00 Hörsaal 1, Währinger Straße 29 1.UG
- Montag 23.11. 18:30 - 21:00 Hörsaal 1, Währinger Straße 29 1.UG
- Montag 30.11. 18:30 - 21:00 Hörsaal 1, Währinger Straße 29 1.UG
- Montag 07.12. 18:30 - 21:00 Hörsaal 1, Währinger Straße 29 1.UG
- Montag 14.12. 18:30 - 21:00 Hörsaal 1, Währinger Straße 29 1.UG
- Montag 11.01. 18:30 - 21:00 Hörsaal 1, Währinger Straße 29 1.UG
- Montag 18.01. 18:30 - 21:00 Hörsaal 1, Währinger Straße 29 1.UG
- Montag 25.01. 18:30 - 21:00 Hörsaal 1, Währinger Straße 29 1.UG
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Die Studierenden verfügen über Fähigkeiten empirische Sachverhalte mittels statistischer Basistechniken zu beschreiben und graphisch korrekt zu repräsentieren; sowie über ein prinzipielles Verständnis für die grundlegenden Konzepte der Wahrscheinlichkeitstheorie und der inferenzstatistischen Modellierung und Methodik.Die Studierenden sind in der Lage inhaltliche Fragestellungen in statistische Modelle zu übersetzen und diese mittels adäquater Techniken der Inferenzstatistik korrekt zu beantworten. Dabei können Sie moderne Softwarewerkzeuge für Analytik und Visualisierung zur Beantwortung datenanalytischer Fragestellungen erfolgreich anwenden.
Art der Leistungskontrolle und erlaubte Hilfsmittel
Ausschließlich schriftliche Prüfung über den Vorlesungsstoff nach dem Prüfungsterminraster der SPL Informatik. Erster Termin am Ende der Lehrveranstaltung (Ende Jänner/Anfang Februar), 3 weitere Termine im folgenden Semester (März, Mai, Juni).Die Prüfung enthält Multiple-Choice Fragen, einfache Rechenaufgaben sowie Fragen zur Ergebnisinterpretation.Der Stoff umfasst alle Themen, die in der Vorlesung vorgetragen wurde.Bei der Prüfung darf jeder Teilnhemer ein selbst gestaltetes, handschriftliches A4-Blatt mit Formeln, Notizen etc. mitbringen. (Collagen, Leporellos u.ä. ist nicht erlaubt). Die Nutzung von darüberhinaus gehenden Unterlagen (Bücher, Skripten) ist bei der Prüfung nicht erlaubt.Taschenrechner dürfen bei der Prüfung verwendet werden. Untersagt ist aber die Verwendung von PDAs, Notebooks und ähnlichen elektronischen Geräten sowie die Nutzung von Smartphones.
Mindestanforderungen und Beurteilungsmaßstab
Mindestens 50% der erreichbaren Punkte
Prüfungsstoff
Deskriptive und Explorative Statistik
Darstellung von Verteilungen
Empirische Verteilungsfunktion und Quantile
Deskriptive Maßzahlen der Lage und Streuung
Weitere Maßzahlen (Schiefe, Wölbung)
Assoziation, Korrelation
Wahrscheinlichkeitsrechnung
Grundlagen der Wahrscheinlichkeitsrechnung
Ereignisalgebra, Grundaufgaben der Kombinatorik
Bedingte Wahrscheinlichkeit und Unabhängigkeit
Satz von der Totalen Wahrscheinlichkeit
Theorem von Bayes
Zufallsvariablen
Wichtige Diskrete Verteilungen
Wichtige Stetige Verteilungen
Ungleichung von Tschebyscheff
Gesetz der großen Zahlen
Zentraler Grenzwertsatz
Techniken der Inferenzstatistik
Punktschätzer
Intervallschätzer
Hypothesentesten
Klassische Tests bei Normalverteilung
Einfache Varianzanalyse
Test auf Unabhängigkeit
Überprüfung von Verteilungsannahmen
Nichtparametrische Testverfahren
Regression
Lineare Einfach-Regression
Inferenz über die Parameter
Konfidenz- und Prognoseintervalle
Residuenanalyse
Darstellung von Verteilungen
Empirische Verteilungsfunktion und Quantile
Deskriptive Maßzahlen der Lage und Streuung
Weitere Maßzahlen (Schiefe, Wölbung)
Assoziation, Korrelation
Wahrscheinlichkeitsrechnung
Grundlagen der Wahrscheinlichkeitsrechnung
Ereignisalgebra, Grundaufgaben der Kombinatorik
Bedingte Wahrscheinlichkeit und Unabhängigkeit
Satz von der Totalen Wahrscheinlichkeit
Theorem von Bayes
Zufallsvariablen
Wichtige Diskrete Verteilungen
Wichtige Stetige Verteilungen
Ungleichung von Tschebyscheff
Gesetz der großen Zahlen
Zentraler Grenzwertsatz
Techniken der Inferenzstatistik
Punktschätzer
Intervallschätzer
Hypothesentesten
Klassische Tests bei Normalverteilung
Einfache Varianzanalyse
Test auf Unabhängigkeit
Überprüfung von Verteilungsannahmen
Nichtparametrische Testverfahren
Regression
Lineare Einfach-Regression
Inferenz über die Parameter
Konfidenz- und Prognoseintervalle
Residuenanalyse
Literatur
Statistics & Data with R: An Applied Approach Through Examples. Y. Cohen & J Y. Cohen, Wiley 2008.Introductory Statistics with R. P.Dalgaard, Springer 2002.Discovering Statistics Using R. A.Field, J. Miles, and Z. Field, Sage 2014.R Einführung durch angewandte Statistik. R.Hatzinger, K.Hornik, H.Nagel, Pearson Studium2011.Statistical Data Analytics. W.Piegorsch, Wiley 2015.Grundlagen der Datenanalyse mit R: Eine anwendungsorientierte Einführung. D. Wollschläger, Springer 2010.
Zuordnung im Vorlesungsverzeichnis
Module: DAS EST UF-INF-12
Letzte Änderung: Fr 27.01.2023 00:16