Universität Wien FIND

052101 VU Numerical Algorithms (2019W)

Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Details

max. 50 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Montag 07.10. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
Montag 14.10. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
Montag 21.10. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
Montag 28.10. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
Montag 04.11. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
Montag 11.11. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
Montag 18.11. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
Montag 25.11. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
Montag 02.12. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
Montag 16.12. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
Montag 13.01. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
Montag 20.01. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
Montag 27.01. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Get acquainted with fundamental concepts of numerical algorithms (approximations in numerical computation, conditioning, numerical stability) and with techniques for the analysis of numerical algorithms (perturbation theory). Study selected numerical algorithms (mostly matrix algorithms) in detail. Understand the interdependencies between problem data, numerical algorithm, implementation of the algorithm, hardware, performance and accuracy.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Three sets of homework problems (with theoretical and programming components - implementation, experimentation, analysis); test in the middle and in the end of the semester.

Mindestanforderungen und Beurteilungsmaßstab

The maximum possible score is 78 points (12 per set of homework problems, 6 for the quizzes, 36 for the test). At least 39 points are required for passing the course.

Prüfungsstoff

Material presented in class and contents of homework problems.

Literatur

Slides; M. T. Heath: “Scientific Computing – an Introductory Survey”

Zuordnung im Vorlesungsverzeichnis

Letzte Änderung: Mo 30.09.2019 14:47