052300 VU Foundations of Data Analysis (2019W)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Sa 07.09.2019 09:00 bis Mo 23.09.2019 09:00
- Abmeldung bis Mo 14.10.2019 23:59
Details
max. 50 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Mittwoch 02.10. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Donnerstag 03.10. 11:30 - 13:00 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Mittwoch 09.10. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Donnerstag 10.10. 11:30 - 13:00 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Mittwoch 16.10. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Donnerstag 17.10. 11:30 - 13:00 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Mittwoch 23.10. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Donnerstag 24.10. 11:30 - 13:00 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Mittwoch 30.10. 09:45 - 11:15 Hörsaal C2 UniCampus Hof 2 2G-K1-03
- Donnerstag 31.10. 11:30 - 13:00 Hörsaal C2 UniCampus Hof 2 2G-K1-03
-
Mittwoch
06.11.
09:45 - 11:15
Hörsaal 2, Währinger Straße 29 2.OG
Hörsaal C2 UniCampus Hof 2 2G-K1-03 -
Donnerstag
07.11.
11:30 - 13:00
Hörsaal 2, Währinger Straße 29 2.OG
UZA2 Hörsaal 5 (Raum 2Z202) 2.OG -
Mittwoch
13.11.
09:45 - 11:15
Hörsaal 2, Währinger Straße 29 2.OG
Hörsaal C2 UniCampus Hof 2 2G-K1-03 -
Donnerstag
14.11.
11:30 - 13:00
Hörsaal 2, Währinger Straße 29 2.OG
UZA2 Hörsaal 5 (Raum 2Z202) 2.OG -
Mittwoch
20.11.
09:45 - 11:15
Hörsaal 2, Währinger Straße 29 2.OG
Hörsaal C2 UniCampus Hof 2 2G-K1-03 -
Donnerstag
21.11.
11:30 - 13:00
Hörsaal 2, Währinger Straße 29 2.OG
UZA2 Hörsaal 5 (Raum 2Z202) 2.OG -
Mittwoch
27.11.
09:45 - 11:15
Hörsaal 2, Währinger Straße 29 2.OG
Hörsaal C2 UniCampus Hof 2 2G-K1-03 -
Donnerstag
28.11.
11:30 - 13:00
Hörsaal 2, Währinger Straße 29 2.OG
UZA2 Hörsaal 5 (Raum 2Z202) 2.OG -
Mittwoch
04.12.
09:45 - 11:15
Hörsaal 2, Währinger Straße 29 2.OG
Hörsaal C2 UniCampus Hof 2 2G-K1-03 - Donnerstag 05.12. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
- Mittwoch 11.12. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
- Donnerstag 12.12. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
- Mittwoch 08.01. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
- Donnerstag 09.01. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
- Mittwoch 15.01. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
- Donnerstag 16.01. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
- Mittwoch 22.01. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
- Donnerstag 23.01. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
- Mittwoch 29.01. 09:45 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
- Donnerstag 30.01. 11:30 - 13:00 UZA2 Hörsaal 5 (Raum 2Z202) 2.OG
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Today's currency is data. However, data is only useful if we are able to extract useful information from it. This is the aim of data analysis in general. This course aims to survey the foundations of data analysis. This includes concepts from statistical inference, regression analysis, classification analysis, clustering analysis, dimensionality reduction.Concepts as well as techniques are introduced and practiced.
Art der Leistungskontrolle und erlaubte Hilfsmittel
- 2 labs (i.e. programming exercises including peer review), for each lab you will get a maximum of 18% of the required points.
- 2 pen-and-paper exercise sheets. They serve as a preparation for the tests. For each exercise sheet you will be able to get a maximum of 5% of the total points.
- 2 exams, one mid-term and one final, each 25% of the total points.
Furthermore you can complete:
- 1 exercise sheet to assess your current mathematical (prerequisite) knowledge, 1% of the total points;
- 3 anonymized feedbacks (for a maximum of 3 feedbacks i.e. 1% for each feedback) These feedbacks can either be returned to the Tutor responsible for the lecture in an anonymized manner.
- 2 pen-and-paper exercise sheets. They serve as a preparation for the tests. For each exercise sheet you will be able to get a maximum of 5% of the total points.
- 2 exams, one mid-term and one final, each 25% of the total points.
Furthermore you can complete:
- 1 exercise sheet to assess your current mathematical (prerequisite) knowledge, 1% of the total points;
- 3 anonymized feedbacks (for a maximum of 3 feedbacks i.e. 1% for each feedback) These feedbacks can either be returned to the Tutor responsible for the lecture in an anonymized manner.
Mindestanforderungen und Beurteilungsmaßstab
For bachelor students, the mandatory prerequisite for this class is the successful completion of the following courses:
- StEOP
- Programmierung 2 (PR2)
- Mathematische Grundlagen der Informatik 2 (MG2)
- Theoretische Informatik (THI)
- Modellierung (MOD)
- Algorithmen und Datenstrukturen (ADS)Grading will be done according to the following scheme:
1 – at least 87.5%
2 – at least 75.0%
3 - at least 60.0%
4 – at least 40.0%Please keep in mind that in order to pass the course, you will need at least 30% of the total score in all labs and pen-and-papers combined with 30% of the total score of the tests.In order to successfully pass the course, regular attendance is strongly recommended, however not mandatory.
- StEOP
- Programmierung 2 (PR2)
- Mathematische Grundlagen der Informatik 2 (MG2)
- Theoretische Informatik (THI)
- Modellierung (MOD)
- Algorithmen und Datenstrukturen (ADS)Grading will be done according to the following scheme:
1 – at least 87.5%
2 – at least 75.0%
3 - at least 60.0%
4 – at least 40.0%Please keep in mind that in order to pass the course, you will need at least 30% of the total score in all labs and pen-and-papers combined with 30% of the total score of the tests.In order to successfully pass the course, regular attendance is strongly recommended, however not mandatory.
Prüfungsstoff
1. Models, Statistical Inference, and General Techniques
1.1. Fundamental Concepts in Inference
1.2. Parametric Inference
1.3. Hypothesis Testing and p-values
1.4. The Bootstrap
1.5. Data Splitting, Cross-Validation
2. Regression Modelling
2.1. Simple Linear Regression
2.2. Multiple Regression
2.3. Further Regression Methods
2.4. Generalized Linear Models
2.5. Regression Trees
3. Classification Modelling
3.1. Decision Theoretic Introduction; Error rates, and Bayes Optimality
3.2. Logistic Regression
3.3. Classification Trees
3.4. Support Vector Machines
3.6. Further Classification Methods
4. Neural Networks
5. Basic Techniques of Unsupervised Learning
5.1. Dimension Reduction (Matrix Factorization)
5.2. Association Rules
6. Clustering Methods
6.1. Hierarchical Clustering
6.2. Model-based Clustering
6.3. Evaluation and Validation of Clustering Results
6.4. Density-based Clustering
6.5. Outlier Detection
1.1. Fundamental Concepts in Inference
1.2. Parametric Inference
1.3. Hypothesis Testing and p-values
1.4. The Bootstrap
1.5. Data Splitting, Cross-Validation
2. Regression Modelling
2.1. Simple Linear Regression
2.2. Multiple Regression
2.3. Further Regression Methods
2.4. Generalized Linear Models
2.5. Regression Trees
3. Classification Modelling
3.1. Decision Theoretic Introduction; Error rates, and Bayes Optimality
3.2. Logistic Regression
3.3. Classification Trees
3.4. Support Vector Machines
3.6. Further Classification Methods
4. Neural Networks
5. Basic Techniques of Unsupervised Learning
5.1. Dimension Reduction (Matrix Factorization)
5.2. Association Rules
6. Clustering Methods
6.1. Hierarchical Clustering
6.2. Model-based Clustering
6.3. Evaluation and Validation of Clustering Results
6.4. Density-based Clustering
6.5. Outlier Detection
Literatur
> Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer 2007.
> Han, Kamber: Data Mining: Concepts and Techniques, Elsevier 2012.
> Hastie-Tibshirani-Friedman: The Elements of Statistical Learning, Springer 2009.
> James-Witten-Hastie-Tibshirani: An Introduction to Statistical Learning with Applications in R, Springer 2015.
> Han, Kamber: Data Mining: Concepts and Techniques, Elsevier 2012.
> Hastie-Tibshirani-Friedman: The Elements of Statistical Learning, Springer 2009.
> James-Witten-Hastie-Tibshirani: An Introduction to Statistical Learning with Applications in R, Springer 2015.
Zuordnung im Vorlesungsverzeichnis
Module: FDA AKM SWI STW
Letzte Änderung: Sa 02.04.2022 00:17