Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
052300 VU Foundations of Data Analysis (2020W)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
- Anmeldung von Mo 14.09.2020 09:00 bis Mo 21.09.2020 09:00
- Abmeldung bis Mi 14.10.2020 23:59
Details
max. 50 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
Donnerstag
01.10.
11:30 - 13:00
Digital
Mittwoch
07.10.
09:45 - 11:15
Digital
Donnerstag
08.10.
11:30 - 13:00
Digital
Mittwoch
14.10.
09:45 - 11:15
Digital
Donnerstag
15.10.
11:30 - 13:00
Digital
Mittwoch
21.10.
09:45 - 11:15
Digital
Donnerstag
22.10.
11:30 - 13:00
Digital
Mittwoch
28.10.
09:45 - 11:15
Digital
Donnerstag
29.10.
11:30 - 13:00
Digital
Mittwoch
04.11.
09:45 - 11:15
Digital
Donnerstag
05.11.
11:30 - 13:00
Digital
Mittwoch
11.11.
09:45 - 11:15
Digital
Donnerstag
12.11.
11:30 - 13:00
Digital
Mittwoch
18.11.
09:45 - 11:15
Digital
Donnerstag
19.11.
11:30 - 13:00
Digital
Mittwoch
25.11.
09:45 - 11:15
Digital
Donnerstag
26.11.
11:30 - 13:00
Digital
Mittwoch
02.12.
09:45 - 11:15
Digital
Donnerstag
03.12.
11:30 - 13:00
Digital
Mittwoch
09.12.
09:45 - 11:15
Digital
Donnerstag
10.12.
11:30 - 13:00
Digital
Mittwoch
16.12.
09:45 - 11:15
Digital
Donnerstag
17.12.
11:30 - 13:00
Digital
Donnerstag
07.01.
11:30 - 13:00
Digital
Mittwoch
13.01.
09:45 - 11:15
Digital
Donnerstag
14.01.
11:30 - 13:00
Digital
Mittwoch
20.01.
09:45 - 11:15
Digital
Donnerstag
21.01.
11:30 - 13:00
Digital
Mittwoch
27.01.
09:45 - 11:15
Digital
Donnerstag
28.01.
11:30 - 13:00
Digital
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
- 2 labs (i.e. programming exercises including peer review), for each lab you will get a maximum of 18% of the required points.- 2 pen-and-paper exercise sheets. They serve as a preparation for the exams. For each exercise sheet you will be able to get a maximum of 5% of the required points.- 2 exams, one mid-term and one final, each 25% of the total points.Furthermore you can complete:- 1 exercise sheet to assess your current mathematical (prerequisite) knowledge, 1% of the total points.- 3 anonymized feedbacks, each 1% of the total points.- in addition you can earn at most 10% of bonus points for completing voluntary quizzes
Mindestanforderungen und Beurteilungsmaßstab
For bachelor students, the mandatory prerequisite for this class is the successful completion of the following courses:
- StEOP
- Programmierung 2 (PR2)
- Mathematische Grundlagen der Informatik 2 (MG2)
- Theoretische Informatik (THI)
- Modellierung (MOD)
- Algorithmen und Datenstrukturen (ADS)Grading will be done according to the following scheme:
1 – at least 87.5%
2 – at least 75.0%
3 – at least 60.0%
4 – at least 40.0%To pass the course, you need at least 30% of the total score in all assignments combined with 40% of the total score of the exams.In order to successfully pass the course, regular attendance is strongly recommended, however not mandatory.
- StEOP
- Programmierung 2 (PR2)
- Mathematische Grundlagen der Informatik 2 (MG2)
- Theoretische Informatik (THI)
- Modellierung (MOD)
- Algorithmen und Datenstrukturen (ADS)Grading will be done according to the following scheme:
1 – at least 87.5%
2 – at least 75.0%
3 – at least 60.0%
4 – at least 40.0%To pass the course, you need at least 30% of the total score in all assignments combined with 40% of the total score of the exams.In order to successfully pass the course, regular attendance is strongly recommended, however not mandatory.
Prüfungsstoff
1. Models, Statistical Inference, and General Techniques
1.1. Fundamental Concepts in Inference
1.2. Parametric Inference
1.3. Data Splitting, Cross-Validation
2. Regression Modelling
2.1. Simple Linear Regression
2.2. Multiple Regression
2.3. Further Regression Methods
2.4. Generalized Linear Models
2.5. Regression Trees
3. Classification Modelling
3.1. Decision Theoretic Introduction; Error rates, and Bayes Optimality
3.2. Logistic Regression
3.3. Classification Trees
3.4. Support Vector Machines
3.6. Further Classification Methods
4. Neural Networks
5. Basic Techniques of Unsupervised Learning
5.1. Dimension Reduction (Matrix Factorization)
5.2. Association Rules
6. Clustering Methods
6.1. Partitioning Clustering
6.2. Hierarchical Clustering
6.3. Density-based Clustering
6.4. Evaluation and Validation of Clustering Results
1.1. Fundamental Concepts in Inference
1.2. Parametric Inference
1.3. Data Splitting, Cross-Validation
2. Regression Modelling
2.1. Simple Linear Regression
2.2. Multiple Regression
2.3. Further Regression Methods
2.4. Generalized Linear Models
2.5. Regression Trees
3. Classification Modelling
3.1. Decision Theoretic Introduction; Error rates, and Bayes Optimality
3.2. Logistic Regression
3.3. Classification Trees
3.4. Support Vector Machines
3.6. Further Classification Methods
4. Neural Networks
5. Basic Techniques of Unsupervised Learning
5.1. Dimension Reduction (Matrix Factorization)
5.2. Association Rules
6. Clustering Methods
6.1. Partitioning Clustering
6.2. Hierarchical Clustering
6.3. Density-based Clustering
6.4. Evaluation and Validation of Clustering Results
Literatur
Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer 2007.Han, Kamber: Data Mining: Concepts and Techniques, Elsevier 2012.Hastie-Tibshirani-Friedman: The Elements of Statistical Learning, Springer 2009.James-Witten-Hastie-Tibshirani: An Introduction to Statistical Learning with Applications in R, Springer 2015.Shai Shalev-Shwartz, Shai Ben-David: Understanding Machine Learning: From Theory to Algorithms, Cambridge University Press 2014.
Zuordnung im Vorlesungsverzeichnis
Module: FDA AKM SWI STW
Letzte Änderung: Di 12.01.2021 09:07
Concepts as well as techniques are introduced and practiced.Due to the ongoing pandemic, we will adopt a mixed lecture format that complements pre-recorded video lectures with live (offline or online) review sessions. New video lectures and tutorials will be made available on Moodle on an ongoing basis. These videos form the basis for the review sessions, which will either be held in-person in the lecture hall or online via Big Blue Button sessions during the official lecture times. In the review sessions, we will review the most important concepts introduced in the videos and answer any questions you may have.