052311 VU Data Mining (2022W)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mi 14.09.2022 09:00 bis Mi 21.09.2022 09:00
- Abmeldung bis Fr 14.10.2022 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
Dienstag
04.10.
15:00 - 16:30
PC-Seminarraum 3, Kolingasse 14-16, OG02
Donnerstag
06.10.
08:00 - 09:30
Digital
Dienstag
11.10.
15:00 - 16:30
PC-Seminarraum 3, Kolingasse 14-16, OG02
Donnerstag
13.10.
08:00 - 09:30
Digital
Dienstag
18.10.
15:00 - 16:30
PC-Seminarraum 3, Kolingasse 14-16, OG02
Donnerstag
20.10.
08:00 - 09:30
Digital
Dienstag
25.10.
15:00 - 16:30
PC-Seminarraum 3, Kolingasse 14-16, OG02
Donnerstag
27.10.
08:00 - 09:30
Digital
Donnerstag
03.11.
08:00 - 09:30
Digital
Dienstag
08.11.
15:00 - 16:30
PC-Seminarraum 3, Kolingasse 14-16, OG02
Donnerstag
10.11.
08:00 - 09:30
Digital
Dienstag
15.11.
15:00 - 16:30
PC-Seminarraum 3, Kolingasse 14-16, OG02
Donnerstag
17.11.
08:00 - 09:30
Digital
Dienstag
22.11.
15:00 - 16:30
PC-Seminarraum 3, Kolingasse 14-16, OG02
Donnerstag
24.11.
08:00 - 09:30
Digital
Dienstag
29.11.
15:00 - 16:30
PC-Seminarraum 3, Kolingasse 14-16, OG02
Donnerstag
01.12.
08:00 - 09:30
Digital
Dienstag
06.12.
15:00 - 16:30
PC-Seminarraum 3, Kolingasse 14-16, OG02
Dienstag
13.12.
15:00 - 16:30
PC-Seminarraum 3, Kolingasse 14-16, OG02
Donnerstag
15.12.
08:00 - 09:30
Digital
Dienstag
10.01.
15:00 - 16:30
PC-Seminarraum 3, Kolingasse 14-16, OG02
Donnerstag
12.01.
08:00 - 09:30
Digital
Dienstag
17.01.
15:00 - 16:30
PC-Seminarraum 3, Kolingasse 14-16, OG02
Donnerstag
19.01.
08:00 - 09:30
Digital
Dienstag
24.01.
15:00 - 16:30
PC-Seminarraum 3, Kolingasse 14-16, OG02
Donnerstag
26.01.
08:00 - 09:30
Digital
Dienstag
31.01.
15:00 - 16:30
PC-Seminarraum 3, Kolingasse 14-16, OG02
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Active participation
Exercise sheets (individual work)
Programming assignments (group work)
Peer-review of other participants (individual work)
Midterm and final exam (individual work)
Exercise sheets (individual work)
Programming assignments (group work)
Peer-review of other participants (individual work)
Midterm and final exam (individual work)
Mindestanforderungen und Beurteilungsmaßstab
A mandatory prerequisite for this class is the successful completion of FDA (052300 VU Foundations of Data Analysis) or an equivalent lecture. Experience in programming in Python is expected.Components:
30% Exercise sheets
30% Programming exercises in teams, peer-review
40% Midterm and final examTo complete the course, you need to achieve at least 30% of the overall points in the exercises and at least 30% of the points for each exam and programming exercise.Grading:
>87,00 %: 1
between 75,00 % and 86,99 %: 2
between 63,00 % and 74,99 %: 3
between 50,00 % and 62,99 %: 4
< 50%: 5
30% Exercise sheets
30% Programming exercises in teams, peer-review
40% Midterm and final examTo complete the course, you need to achieve at least 30% of the overall points in the exercises and at least 30% of the points for each exam and programming exercise.Grading:
>87,00 %: 1
between 75,00 % and 86,99 %: 2
between 63,00 % and 74,99 %: 3
between 50,00 % and 62,99 %: 4
< 50%: 5
Prüfungsstoff
- Dimensionality reduction
- Clustering of high dimensional data (subspace clustering, deep clustering)
- Kernel methods
- Mining and learning with graphs (graph kernels, graph neural networks)
- Community structure in graphs (networks)
- Knowledge graphs
- Multi-relational graphs
- Diffusion processes on graphs
- Clustering of high dimensional data (subspace clustering, deep clustering)
- Kernel methods
- Mining and learning with graphs (graph kernels, graph neural networks)
- Community structure in graphs (networks)
- Knowledge graphs
- Multi-relational graphs
- Diffusion processes on graphs
Literatur
Han J., Kamber M., Pei J. Data Mining: Concepts and Techniques
Tan P.-N., Steinbach M., Kumar V. Introduction to Data Mining
Ester M., Sander J. Knowledge Discovery in Databases: Techniken und Anwendungen
Goodfellow, Ian, et al. Deep Learning
Shai Shalev-Shwartz, Shai Ben-David: Understanding Machine Learning: From Theory to Algorithms, Cambridge University Press 2014
Nils M. Kriege, Fredrik D. Johansson, Christopher Morris: A Survey on Graph Kernels, Applied Network Science, Machine learning with graphs, 5:6, 2020
Karsten M. Borgwardt, M. Elisabetta Ghisu, Felipe Llinares-López, Leslie O'Bray, Bastian Rieck: Graph Kernels: State-of-the-Art and Future Challenges. Found. Trends Mach. Learn. 13(5-6) (2020)
David Easley and Jon Kleinberg, Networks, Crowds, and Markets: Reasoning About a Highly Connected World
Albert-László Barabási, Network Science
Tan P.-N., Steinbach M., Kumar V. Introduction to Data Mining
Ester M., Sander J. Knowledge Discovery in Databases: Techniken und Anwendungen
Goodfellow, Ian, et al. Deep Learning
Shai Shalev-Shwartz, Shai Ben-David: Understanding Machine Learning: From Theory to Algorithms, Cambridge University Press 2014
Nils M. Kriege, Fredrik D. Johansson, Christopher Morris: A Survey on Graph Kernels, Applied Network Science, Machine learning with graphs, 5:6, 2020
Karsten M. Borgwardt, M. Elisabetta Ghisu, Felipe Llinares-López, Leslie O'Bray, Bastian Rieck: Graph Kernels: State-of-the-Art and Future Challenges. Found. Trends Mach. Learn. 13(5-6) (2020)
David Easley and Jon Kleinberg, Networks, Crowds, and Markets: Reasoning About a Highly Connected World
Albert-László Barabási, Network Science
Zuordnung im Vorlesungsverzeichnis
Module: DM
Letzte Änderung: Do 11.05.2023 11:27
Important: We will hold the first lecture onsite on Tuesday 04.10. at 15:00 o'clock. If you cannot join onsite, you can use the following link to join: https://moodle.univie.ac.at/mod/bigbluebuttonbn/guestlink.php?gid=2LCNMyla8QYDThe lecture covers essential topics in Data Mining and Machine Learning and focuses on recent research on the following topics:
1. Clustering
2. Learning with graph-structured data
3. Community structure in graphs
4. Diffusion processes on graphsSubject-specific goals:
- Analysis and interpretation of scientific data
- Evaluate results of the analysis process
- Users support and adviceGeneric goals:
- Teamwork
- Improvement of programming skills
- Understanding of interplay in Data Mining and other disciplines