052317 VU Neuroinformatics: Machine Learning for Neuronal Data Analysis (2022W)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mi 14.09.2022 09:00 bis Mi 21.09.2022 09:00
- Abmeldung bis Fr 14.10.2022 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Dienstag 04.10. 16:45 - 18:15 Seminarraum 10, Kolingasse 14-16, OG01
- Donnerstag 06.10. 16:45 - 18:15 Seminarraum 18 Kolingasse 14-16, OG02
- Dienstag 11.10. 16:45 - 18:15 Seminarraum 10, Kolingasse 14-16, OG01
- Donnerstag 13.10. 16:45 - 18:15 Seminarraum 18 Kolingasse 14-16, OG02
- Dienstag 18.10. 16:45 - 18:15 Seminarraum 10, Kolingasse 14-16, OG01
- Donnerstag 20.10. 16:45 - 18:15 Seminarraum 18 Kolingasse 14-16, OG02
- Dienstag 25.10. 16:45 - 18:15 Seminarraum 10, Kolingasse 14-16, OG01
- Donnerstag 27.10. 16:45 - 18:15 Seminarraum 18 Kolingasse 14-16, OG02
- Donnerstag 03.11. 16:45 - 18:15 Seminarraum 18 Kolingasse 14-16, OG02
- Dienstag 08.11. 16:45 - 18:15 Seminarraum 10, Kolingasse 14-16, OG01
- Donnerstag 10.11. 16:45 - 18:15 Seminarraum 18 Kolingasse 14-16, OG02
- Dienstag 15.11. 16:45 - 18:15 Seminarraum 10, Kolingasse 14-16, OG01
- Donnerstag 17.11. 16:45 - 18:15 Seminarraum 18 Kolingasse 14-16, OG02
- Dienstag 22.11. 16:45 - 18:15 Seminarraum 10, Kolingasse 14-16, OG01
- Donnerstag 24.11. 16:45 - 18:15 Seminarraum 18 Kolingasse 14-16, OG02
- Dienstag 29.11. 16:45 - 18:15 Seminarraum 10, Kolingasse 14-16, OG01
- Donnerstag 01.12. 16:45 - 18:15 Seminarraum 18 Kolingasse 14-16, OG02
- Dienstag 06.12. 16:45 - 18:15 Seminarraum 10, Kolingasse 14-16, OG01
- Dienstag 13.12. 16:45 - 18:15 Seminarraum 10, Kolingasse 14-16, OG01
- Donnerstag 15.12. 16:45 - 18:15 Seminarraum 18 Kolingasse 14-16, OG02
- Dienstag 10.01. 16:45 - 18:15 Seminarraum 10, Kolingasse 14-16, OG01
- Donnerstag 12.01. 16:45 - 18:15 Seminarraum 18 Kolingasse 14-16, OG02
- Dienstag 17.01. 16:45 - 18:15 Seminarraum 10, Kolingasse 14-16, OG01
- Donnerstag 19.01. 16:45 - 18:15 Seminarraum 18 Kolingasse 14-16, OG02
- Dienstag 24.01. 16:45 - 18:15 Seminarraum 10, Kolingasse 14-16, OG01
- Donnerstag 26.01. 16:45 - 18:15 Seminarraum 18 Kolingasse 14-16, OG02
- Dienstag 31.01. 16:45 - 18:15 Seminarraum 10, Kolingasse 14-16, OG01
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
What brain regions are involved in the processing of certain information? How can we decode a person’s intentions from neuronal data, and use it to build a Brain-Computer Interface? And how does high level cognition arise from the joint activity of individual neurons? These are only some of the questions, that the methods developed in the field of neuroinformatics can help answer. In this course you will get to know a variety of recording modalities of neuronal data (e.g. fMRI, EEG, recordings of single neurons) and methods to analyse the obtained signals. The course will be very practice oriented, introducing you to traditional and modern methods of data analysis and machine learning in neuroinformatics in a combination of lectures and programming tutorials. Prior knowledge of signal processing and/or machine learning methods will be helpful, but not required to follow the course.
Art der Leistungskontrolle und erlaubte Hilfsmittel
20% pen and paper assignment
20% programming assignment
20% weekly quizzes
40% group project
. 10% project proposal
. 10% code
. 20% final presentation
20% programming assignment
20% weekly quizzes
40% group project
. 10% project proposal
. 10% code
. 20% final presentation
Mindestanforderungen und Beurteilungsmaßstab
Grades will be assigned according to the following scheme:1. At least 87.5%
2. At least 75.0%
3. At least 62.5%
4. At least 50.0%
2. At least 75.0%
3. At least 62.5%
4. At least 50.0%
Prüfungsstoff
Material presented and discussed during the lectures and programming tutorials, as well as the topics covered in assignments.
Literatur
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Mo 17.10.2022 11:49