Universität Wien

052319 VU Current topics in Neuroinformatics (2024S)

Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 25 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Dienstag 05.03. 13:15 - 14:45 Seminarraum 3, Währinger Straße 29 1.UG
  • Montag 18.03. 16:45 - 20:00 PC-Seminarraum 3, Kolingasse 14-16, OG02
  • Dienstag 19.03. 13:15 - 14:45 Seminarraum 3, Währinger Straße 29 1.UG
  • Dienstag 09.04. 13:15 - 14:45 Seminarraum 3, Währinger Straße 29 1.UG
  • Dienstag 16.04. 13:15 - 14:45 Seminarraum 3, Währinger Straße 29 1.UG
  • Dienstag 23.04. 13:15 - 14:45 Seminarraum 3, Währinger Straße 29 1.UG
  • Dienstag 30.04. 13:15 - 14:45 Seminarraum 3, Währinger Straße 29 1.UG
  • Dienstag 07.05. 13:15 - 14:45 Seminarraum 3, Währinger Straße 29 1.UG
  • Dienstag 14.05. 13:15 - 14:45 Seminarraum 3, Währinger Straße 29 1.UG
  • Dienstag 21.05. 13:15 - 14:45 Seminarraum 3, Währinger Straße 29 1.UG
  • Dienstag 28.05. 13:15 - 14:45 Seminarraum 3, Währinger Straße 29 1.UG
  • Dienstag 04.06. 13:15 - 14:45 Seminarraum 3, Währinger Straße 29 1.UG
  • Dienstag 11.06. 13:15 - 14:45 Seminarraum 3, Währinger Straße 29 1.UG
  • Dienstag 18.06. 13:15 - 14:45 Seminarraum 3, Währinger Straße 29 1.UG
  • Dienstag 25.06. 13:15 - 14:45 Seminarraum 3, Währinger Straße 29 1.UG

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

What brain regions are involved in the processing of certain information? How can we decode a person’s intentions from neuronal data and use it to build a Brain-Computer Interface? And how does high-level cognition arise from the joint activity of individual neurons? These are only some of the questions that the methods developed in the field of neuroinformatics can help answer. In this course, you will get to know a variety of recording modalities of neuronal data (e.g., fMRI, EEG, recordings of single neurons) and methods to analyze the obtained signals.

The course will be in the style of a seminar, where students will independently read and present scientific papers, which will then be discussed in class. Prior knowledge of signal processing and/or machine learning methods will be helpful, but not required to follow the course.

Art der Leistungskontrolle und erlaubte Hilfsmittel

The overall grade is composed as follows:
40% programming assignment
40% paper presentation
20% weekly quizzes

Mindestanforderungen und Beurteilungsmaßstab

To receive a passing grade, you may be absent without excuse a maximum of three times, and at least 20% of the available points must be earned on each task.

Grades will be assigned according to the following scheme:
At least 90%: very good (1)
At least 80%: good (2)
At least 70%: satisfactory (3)
At least 60%: sufficient (4)
Less than 60%: not sufficient (5)

Prüfungsstoff

The participants must achieve at least 20% of the available points in all three tasks. The topics of the quizzes cover everything presented during the lectures.

Literatur

Will be provided on moodle

Zuordnung im Vorlesungsverzeichnis

Letzte Änderung: Mi 31.07.2024 11:25