052321 VU Recent Developments in Knowledge Discovery in Databases (2025S)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 10.02.2025 09:00 bis Fr 21.02.2025 09:00
- Abmeldung bis Fr 14.03.2025 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Dienstag 04.03. 15:00 - 16:30 Seminarraum 8, Währinger Straße 29 1.OG
- Donnerstag 06.03. 13:15 - 14:45 Seminarraum 5, Währinger Straße 29 1.UG
- Dienstag 11.03. 15:00 - 16:30 Seminarraum 8, Währinger Straße 29 1.OG
- Donnerstag 13.03. 13:15 - 14:45 Seminarraum 5, Währinger Straße 29 1.UG
- Dienstag 18.03. 15:00 - 16:30 Seminarraum 8, Währinger Straße 29 1.OG
- Donnerstag 20.03. 13:15 - 14:45 Seminarraum 5, Währinger Straße 29 1.UG
- Dienstag 25.03. 15:00 - 16:30 Seminarraum 8, Währinger Straße 29 1.OG
- Donnerstag 27.03. 13:15 - 14:45 Seminarraum 5, Währinger Straße 29 1.UG
- Dienstag 01.04. 15:00 - 16:30 Seminarraum 8, Währinger Straße 29 1.OG
- Donnerstag 03.04. 13:15 - 14:45 Seminarraum 5, Währinger Straße 29 1.UG
- Dienstag 08.04. 15:00 - 16:30 Seminarraum 8, Währinger Straße 29 1.OG
- Donnerstag 10.04. 13:15 - 14:45 Seminarraum 5, Währinger Straße 29 1.UG
- N Dienstag 29.04. 15:00 - 16:30 Seminarraum 8, Währinger Straße 29 1.OG
- Dienstag 06.05. 15:00 - 16:30 Seminarraum 8, Währinger Straße 29 1.OG
- Donnerstag 08.05. 13:15 - 14:45 Seminarraum 5, Währinger Straße 29 1.UG
- Dienstag 13.05. 15:00 - 16:30 Seminarraum 8, Währinger Straße 29 1.OG
- Donnerstag 15.05. 13:15 - 14:45 Seminarraum 5, Währinger Straße 29 1.UG
- Dienstag 20.05. 15:00 - 16:30 Seminarraum 8, Währinger Straße 29 1.OG
- Donnerstag 22.05. 13:15 - 14:45 Seminarraum 5, Währinger Straße 29 1.UG
- Dienstag 27.05. 15:00 - 16:30 Seminarraum 8, Währinger Straße 29 1.OG
- Dienstag 03.06. 15:00 - 16:30 Seminarraum 8, Währinger Straße 29 1.OG
- Donnerstag 05.06. 13:15 - 14:45 Seminarraum 5, Währinger Straße 29 1.UG
- Dienstag 10.06. 15:00 - 16:30 Seminarraum 8, Währinger Straße 29 1.OG
- Donnerstag 12.06. 13:15 - 14:45 Seminarraum 5, Währinger Straße 29 1.UG
- Dienstag 17.06. 15:00 - 16:30 Seminarraum 8, Währinger Straße 29 1.OG
- Dienstag 24.06. 15:00 - 16:30 Seminarraum 8, Währinger Straße 29 1.OG
- Donnerstag 26.06. 13:15 - 14:45 Seminarraum 5, Währinger Straße 29 1.UG
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
100 points in total.
Causality: a small test at the end of the Causality course; Exercise sheet; Paper presentation; Causal challenge (= creating a small database).Clustering: either theory or practical project (25P); Test in the end (25P).
Causality: a small test at the end of the Causality course; Exercise sheet; Paper presentation; Causal challenge (= creating a small database).Clustering: either theory or practical project (25P); Test in the end (25P).
Mindestanforderungen und Beurteilungsmaßstab
This course is for master students only.We recommend to have visited the basic bachelor courses as well as
- Foundations of Data Analysis (required)
- Data MiningComponents:
50% from the Causality part
25% Project for clustering
25% Test about clusteringGrading:
>87,00 %: 1
between 75,00 % and 86,99 %: 2
between 63,00 % and 74,99 %: 3
between 50,00 % and 62,99 %: 4
< 50%: 5
- Foundations of Data Analysis (required)
- Data MiningComponents:
50% from the Causality part
25% Project for clustering
25% Test about clusteringGrading:
>87,00 %: 1
between 75,00 % and 86,99 %: 2
between 63,00 % and 74,99 %: 3
between 50,00 % and 62,99 %: 4
< 50%: 5
Prüfungsstoff
Literatur
For the Causal Inference part, this literature provides the background to better understand the taught models and methods:Sayed, Ali H. Inference and Learning from Data: Learning. Vol. 1- 3. Cambridge University Press, 2022.Volume I: Chapters Matrix Theory, Random Variable, Exponential Distributions, pp. 1-195; Random Processes, pp. 240-259; Volume II: Chapters MSE Inference, pp. 1053-1090, Linear Regression, pp. 1121-1153; Maximum Likelihood, pp. 1211-1273, Inference in Graphs: 1682-1737; Volume III: Chapters Regularization, pp. 2221-2257, Logistic Regression, pp. 2457-2496.Access to the book via Library of University of Vienna (website) or Cambridge University Press (website).
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Di 25.03.2025 14:25
The goal of this course is by active learning to understand und be creative in this awesome field of knowledge discovery.In the second part, we focus on clustering. We build upon existing knowledge from FDA and Data Mining and regard recent developments in the field and approaches to open challenges like fairness, noisy data sets, or data with uncertainty.
As a project, students can choose between more theoretical or practical work:
For the theory project, they focus on a recent paper, create a tutorial for it that makes it easy to understand for non-computer scientists, and present it to the group.
If you prefer a more practical project, we give the option to take part in a challenge like the KDD CUP (which is going to be published on March 1st, as a reference, you can regard challenges from last year, e.g.: https://www.biendata.xyz/kdd2024/)
We end with a small test about the topics from the second half of the semester.