Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
052412 VU Business Intelligence II (2021W)
Prüfungsimmanente Lehrveranstaltung
Labels
GEMISCHT
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 13.09.2021 09:00 bis Mo 20.09.2021 09:00
- Abmeldung bis Do 14.10.2021 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
Kickoff Meeting (Online): 07.10. 09:45
Link: https://bbb.cs.univie.ac.at/b/mar-apf-koe-otc
- Donnerstag 07.10. 09:45 - 13:00 Digital
- Donnerstag 14.10. 09:45 - 13:00 Digital
- Donnerstag 21.10. 09:45 - 13:00 Digital
- Donnerstag 28.10. 09:45 - 13:00 Digital
- Donnerstag 04.11. 09:45 - 13:00 Digital
- Donnerstag 11.11. 09:45 - 13:00 Digital
- Donnerstag 18.11. 09:45 - 13:00 Digital
-
Donnerstag
25.11.
09:45 - 13:00
Hörsaal 3, Währinger Straße 29 3.OG
PC-Unterrichtsraum 4, Währinger Straße 29 1.OG - Donnerstag 02.12. 09:45 - 13:00 Digital
- Donnerstag 09.12. 09:45 - 13:00 Digital
- Donnerstag 16.12. 09:45 - 13:00 Digital
- Donnerstag 13.01. 09:45 - 13:00 Digital
- Donnerstag 20.01. 09:45 - 13:00 Digital
-
Donnerstag
27.01.
18:30 - 21:30
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Hörsaal 14 Oskar-Morgenstern-Platz 1 2.Stock
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
The grade is derived from the sum of the two parts (i.e. a maximum of 100 points in total):
* Part A: theoretical and practical exercises submitted individually (max. 55 points)
* Part B: written exam (no aids allowed, max. 45 points).
* Part A: theoretical and practical exercises submitted individually (max. 55 points)
* Part B: written exam (no aids allowed, max. 45 points).
Mindestanforderungen und Beurteilungsmaßstab
‣ Part A: 55% exercises (theoretical and practical)
‣ Part B: 45% written examIn Part A and Part B at least 50% of points need to be achieved and overall at least 50% of points need to be achieved.The grade is calculated from the total points as follows:
>= 87,5% very good (1)
>= 75% good (2)
>= 62,5% satisfactory (3)
>= 50% sufficient (4)
< 50% not sufficient (5)
‣ Part B: 45% written examIn Part A and Part B at least 50% of points need to be achieved and overall at least 50% of points need to be achieved.The grade is calculated from the total points as follows:
>= 87,5% very good (1)
>= 75% good (2)
>= 62,5% satisfactory (3)
>= 50% sufficient (4)
< 50% not sufficient (5)
Prüfungsstoff
* Lecture (slides)
* Exercises (theoretical and practical)
* Exercises (theoretical and practical)
Literatur
* Lecture slides are available in Moodle
* W. Grossmann, S. Rinderle-Ma: Fundamentals of Business Intelligence. Springer-Verlag Berlin Heidelberg (2015)
* W. van der Aalst. Process Mining, Springer (2016)
* M. Dumas, M. La Rosa, J. Mendling, H. A. Reijers: Fundamentals of Business Process Management. Springer (2018)
* W. Grossmann, S. Rinderle-Ma: Fundamentals of Business Intelligence. Springer-Verlag Berlin Heidelberg (2015)
* W. van der Aalst. Process Mining, Springer (2016)
* M. Dumas, M. La Rosa, J. Mendling, H. A. Reijers: Fundamentals of Business Process Management. Springer (2018)
Zuordnung im Vorlesungsverzeichnis
Module: BUS BI2 DSA BI
Letzte Änderung: Fr 12.05.2023 00:13
* process mining
* social network mining
* process analysis
* decision miningIn addition, the following techniques will be discussed:
- Article spinners for businesses
- Stock exchange predictions
- Recommender systemsAll methods will be carried out in several exercises working on a variety of data from BI projects.Students, attending the course, are expected to have knowledge in the following topics:
* Advanced knowledge in Python3.6+ and performing machine learning and data analytics tasks
* Knowledge on process mining algorithms (alpha algorithm, genetic miner, heuristic miner)
* It is recommended but not mandatory to have participated in Business Intelligence I from SS 2021 (https://ufind.univie.ac.at/de/course.html?lv=052411&semester=2021S).