052412 VU Business Intelligence II (2022W)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mi 14.09.2022 09:00 bis Mi 21.09.2022 09:00
- Abmeldung bis Fr 14.10.2022 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
Kickoff Meeting (Online): 06.10. 08:00
Link: https://bbb.cs.univie.ac.at/b/mar-mzl-tjx-k5j
- Donnerstag 06.10. 08:00 - 09:30 Digital (Vorbesprechung)
- Samstag 08.10. 09:00 - 12:15 Digital
- Freitag 21.10. 11:30 - 14:45 Seminarraum 3, Währinger Straße 29 1.UG
- Freitag 28.10. 11:30 - 14:45 Seminarraum 3, Währinger Straße 29 1.UG
- Freitag 04.11. 11:30 - 14:45 Seminarraum 3, Währinger Straße 29 1.UG
- Freitag 11.11. 11:30 - 14:45 Seminarraum 3, Währinger Straße 29 1.UG
- Freitag 18.11. 11:30 - 14:45 Seminarraum 3, Währinger Straße 29 1.UG
- Freitag 25.11. 11:30 - 14:45 Seminarraum 3, Währinger Straße 29 1.UG
- Freitag 02.12. 11:30 - 14:45 Seminarraum 3, Währinger Straße 29 1.UG
- Freitag 09.12. 11:30 - 14:45 Seminarraum 3, Währinger Straße 29 1.UG
- Freitag 16.12. 11:30 - 14:45 Seminarraum 3, Währinger Straße 29 1.UG
- Freitag 13.01. 11:30 - 14:45 Seminarraum 3, Währinger Straße 29 1.UG
-
Freitag
20.01.
11:30 - 14:45
Seminarraum 3, Währinger Straße 29 1.UG
Seminarraum 5, Kolingasse 14-16, EG00
Seminarraum 6, Kolingasse 14-16, EG00 - Freitag 27.01. 11:30 - 14:45 Seminarraum 3, Währinger Straße 29 1.UG
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
The grade is derived from the sum of the two parts (i.e. a maximum of 100 points in total):
* Part A: theoretical and practical exercises submitted (max. 55 points)
* Part B: written exam (no aids allowed, max. 45 points).
* Part A: theoretical and practical exercises submitted (max. 55 points)
* Part B: written exam (no aids allowed, max. 45 points).
Mindestanforderungen und Beurteilungsmaßstab
‣ Part A: 55% exercises (theoretical and practical)
‣ Part B: 45% written examOverall at least 50% of points need to be achieved.The grade is calculated from the total points as follows:
>= 87,5% very good (1)
>= 75% good (2)
>= 62,5% satisfactory (3)
>= 50% sufficient (4)
< 50% not sufficient (5)
‣ Part B: 45% written examOverall at least 50% of points need to be achieved.The grade is calculated from the total points as follows:
>= 87,5% very good (1)
>= 75% good (2)
>= 62,5% satisfactory (3)
>= 50% sufficient (4)
< 50% not sufficient (5)
Prüfungsstoff
* Lecture (slides)
* Exercises (theoretical and practical)
* Exercises (theoretical and practical)
Literatur
* Lecture slides are available in Moodle
* W. Grossmann, S. Rinderle-Ma: Fundamentals of Business Intelligence. Springer-Verlag Berlin Heidelberg (2015)
* W. van der Aalst. Process Mining, Springer (2016)
* M. Dumas, M. La Rosa, J. Mendling, H. A. Reijers: Fundamentals of Business Process Management. Springer (2018)
* W. Grossmann, S. Rinderle-Ma: Fundamentals of Business Intelligence. Springer-Verlag Berlin Heidelberg (2015)
* W. van der Aalst. Process Mining, Springer (2016)
* M. Dumas, M. La Rosa, J. Mendling, H. A. Reijers: Fundamentals of Business Process Management. Springer (2018)
Zuordnung im Vorlesungsverzeichnis
Module: BUS BI2 DSA BI
Letzte Änderung: Do 11.05.2023 11:27
* process mining
* social network mining
* process analysis
* decision miningIn addition, the following techniques will be discussed:
- Article spinners for businesses
- Stock exchange predictions
- Recommender systemsAll methods will be carried out in several exercises working on a variety of data from BI projects.Students, attending the course, are expected to have knowledge in the following topics:
* Advanced knowledge in Python3.6+ and performing machine learning and data analytics tasks
* Advanced knowledge in at least one programming language of your choice (e.g. Javascript, Ruby, Python, ...) recommended
* Knowledge on process mining algorithms (alpha algorithm, genetic miner, heuristic miner)
* It is recommended but not mandatory to have participated in Business Intelligence I from SS 2022 (https://ufind.univie.ac.at/de/course.html?lv=052411&semester=2022S).