052412 VU Business Intelligence II (2024W)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Fr 13.09.2024 09:00 bis Fr 20.09.2024 09:00
- Abmeldung bis Mo 14.10.2024 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Donnerstag 03.10. 09:45 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- N Donnerstag 10.10. 09:45 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Donnerstag 17.10. 09:45 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Donnerstag 24.10. 09:45 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Donnerstag 31.10. 09:45 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Donnerstag 07.11. 09:45 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Donnerstag 14.11. 09:45 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Donnerstag 21.11. 09:45 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Donnerstag 28.11. 09:45 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Donnerstag 05.12. 09:45 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Donnerstag 12.12. 09:45 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Donnerstag 09.01. 09:45 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Donnerstag 16.01. 09:45 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Donnerstag 23.01. 09:45 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Donnerstag 30.01. 09:45 - 13:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
The performance assessment in the Business Intelligence II course is formed by the sum of three components:
1) Group project: max. 35% (including Presentation)
2) Exam on Part A (fundamental topics): max 35%
4) Exam on Part B (advanced topics): max. 30%
1) Group project: max. 35% (including Presentation)
2) Exam on Part A (fundamental topics): max 35%
4) Exam on Part B (advanced topics): max. 30%
Mindestanforderungen und Beurteilungsmaßstab
Overall at least 50% of the points need to be achieved.The grade is calculated from the total points of the components as follows:
>= 87,5% very good (1)
>= 75% good (2)
>= 62,5% satisfactory (3)
>= 50% sufficient (4)
< 50% not sufficient (5)
>= 87,5% very good (1)
>= 75% good (2)
>= 62,5% satisfactory (3)
>= 50% sufficient (4)
< 50% not sufficient (5)
Prüfungsstoff
* Lecture (slides)
* Exercises (theoretical and practical)
* Selected book chapters/sections
* Exercises (theoretical and practical)
* Selected book chapters/sections
Literatur
· Wil van der Aalst: Process Mining: Data Science in Action, 2nd edition (Recommended)
· Josep Carmona et al. Conformance checking, 1st edition (Recommended)
Relevant chapters and sections will be indicated per lecture.
· Josep Carmona et al. Conformance checking, 1st edition (Recommended)
Relevant chapters and sections will be indicated per lecture.
Zuordnung im Vorlesungsverzeichnis
Module: BUS BI2 DSA BI
Letzte Änderung: Mo 30.09.2024 14:25
The course features lectures and exercises that focus on the formal foundations, algorithms, and techniques of process mining. The course will be divided in two main parts.Part A will focus on fundamental tasks in process mining, namely:
· Process discovery, which aims to derive a process model from recorded events
· Conformance checking, which aims to identify deviations between event data and process models
For the above subjects, the course will cover fundamental algorithms as well as advanced, state-of-the-art techniques.Part B will focus on advanced topics, such as:
- Event log extraction, quality and preprocessing
- Predictive process monitoring
- Object-centric process miningThe course will combine lectures with practical exercises, include a guest lecture and practical session with a leading process mining company. Examinations that target your understanding and ability to apply the covered concepts will be complemented with a replication study, in which you dive deep into state-of-the-art research.***Prerequisites***
- You are not required to have taken Business Intelligence I (there will be some redundancy)
- Familiarity with process modeling (BPMN or Petri nets) is helpful but not expected
- Basic programming skills are required for the practical exercises (Python) and group project