Universität Wien

052600 VU Signal and Image Processing (2025S)

Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 50 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Dienstag 04.03. 13:15 - 14:45 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
  • Freitag 07.03. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
  • Dienstag 11.03. 13:15 - 14:45 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
  • Freitag 14.03. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
  • Dienstag 18.03. 13:15 - 14:45 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
  • Freitag 21.03. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
  • Dienstag 25.03. 13:15 - 14:45 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
  • Freitag 28.03. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
  • Dienstag 01.04. 13:15 - 14:45 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
  • Freitag 04.04. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
  • Dienstag 08.04. 13:15 - 14:45 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
  • Freitag 11.04. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
  • Dienstag 29.04. 13:15 - 14:45 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
  • Freitag 02.05. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
  • Dienstag 06.05. 13:15 - 14:45 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
  • Freitag 09.05. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
  • Dienstag 13.05. 13:15 - 14:45 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
  • Freitag 16.05. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
    Seminarraum 3, Währinger Straße 29 1.UG
    Seminarraum 8, Währinger Straße 29 1.OG
  • Dienstag 20.05. 13:15 - 14:45 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
  • Freitag 23.05. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
  • Dienstag 27.05. 13:15 - 14:45 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
  • Freitag 30.05. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
  • Dienstag 03.06. 13:15 - 14:45 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 10.06. 13:15 - 14:45 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
  • Freitag 13.06. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
  • Dienstag 17.06. 13:15 - 14:45 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
  • Freitag 20.06. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
  • Dienstag 24.06. 13:15 - 14:45 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
    PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
    PC-Unterrichtsraum 5, Währinger Straße 29 2.OG
  • Freitag 27.06. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Signals with temporal or spatial structure are ubiquitous. Whether they are 1D signals, as in audio or time-dependent measurement/sensors, whether these are 2D photographs and LIDAR images or whether they are 3D medical volumes, climate models, or computational fluid studies; these signals are everywhere. In this course, we study the mathematical foundations of signal processing and learn how to implement and apply commonly used algorithms in image analysis. Topics we cover include linear time-invariant (LTI) systems, convolution, the Fourier transform and its extensions, sampling and filtering of signals, spectral analysis, information theoretic coding and wavelet analysis.

Art der Leistungskontrolle und erlaubte Hilfsmittel

* Assignments: 1% for math test
* Two feedback sheets: 4%
* Pen & paper exam: 47.5%
* Final exam: 47.5%

In addition, you can earn up to 10% of bonus points by answering questions on Moodle about the pre-recorded videos prior to each review session. These bonus points count towards the overall points independently of the points you achieve on the assignments and the exams, i.e., they can help you pass the course.

Grading will be done according to the following scheme:

1. At least 87.5%
2. At least 75.0%
3. At least 62.5%
4. At least 50.0%

*In addition, you need at least 10% of the points on each exam to pass the course.*

Mindestanforderungen und Beurteilungsmaßstab

Teilnahmevorraussetzungen: StEOP, PR2, MG2, THI, MOD, ADS
Empfohlene Teilnahmevoraussetzung: NUM

The grading scale for the course will be:
1: at least 87.5%
2: at least 75.0%
3: at least 62.5%
4: at least 50.0%

In each exam, a minimum of 10% of the maximum reachable points is required to pass the course.

Prüfungsstoff

The major goals of this course include:
* understanding the mathematical foundations of signal processing
* being able to implement commonly used signal processing algorithms in Python
* applying signal processing algorithms to time-series and image analysis

Literatur

1. Alan V. Oppenheim, Ronald W. Schafer, Discrete-Time Signal Processing, 3rd Edition, Pearson, 2010
2. Rafael C. Gonzales, Richard E. Woods Digital Image Processing 4th edition, Addison-Wesley, 2018.
3. Donald B. Percival, Andrew T. Walden, Spectral Analysis for Physical Applications, Cambridge University Press, 1993

Zuordnung im Vorlesungsverzeichnis

Module: SIP AKM IMI

Letzte Änderung: Mi 30.04.2025 08:25