Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
052613 VU Multimedia Retrieval and Content-Based Search (2023W)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mi 13.09.2023 09:00 bis Mi 20.09.2023 09:00
- Abmeldung bis Sa 14.10.2023 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Dienstag 03.10. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Freitag 06.10. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 10.10. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Freitag 13.10. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 17.10. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Freitag 20.10. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 24.10. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Freitag 27.10. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 31.10. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Freitag 03.11. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 07.11. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Freitag 10.11. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 14.11. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Freitag 17.11. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 21.11. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Freitag 24.11. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 28.11. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Freitag 01.12. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 05.12. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Dienstag 12.12. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Freitag 15.12. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 09.01. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Freitag 12.01. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 16.01. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Freitag 19.01. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 23.01. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Freitag 26.01. 09:45 - 11:15 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 30.01. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Two written examinations (tests) during the semester. No aids are allowed during the exam.
Three assignments are to be submitted throughout the semester,
each will be graded separately.
Grading will be based on
- the completion of the assigned tasks
- the demonstrated understanding of the technologies and underlying theories.
Three assignments are to be submitted throughout the semester,
each will be graded separately.
Grading will be based on
- the completion of the assigned tasks
- the demonstrated understanding of the technologies and underlying theories.
Mindestanforderungen und Beurteilungsmaßstab
Gain a more profound and thorough understanding of the topics presented in the course.The final mark is calculated based on the two written exams (each 20%) and the three assignments (assignment 1: 20%, assignment 2: 20%, assignment 3: 20%). In the context of each assignment, one can receive up to 4 bonus points per assignment, i.e., 12 bonus points in total.To achieve positive grading, students
- must submit a solution for each project assignment, and
- need to reach at least 50% of the maximum points achievable over all assignments, and
- need to reach at least 50% of the maximum points achievable over all written exams, and
- need to be present at each assessment meeting for the assignments if requested.Grading scale:
89% <= P <= 100% Sehr Gut (1)
76% <= P < 89% Gut (2)
63% <= P < 76% Befriedigend (3)
50% <= P < 63% Genügend (4)
0% <= P < 50% Nicht Genügend (5)
- must submit a solution for each project assignment, and
- need to reach at least 50% of the maximum points achievable over all assignments, and
- need to reach at least 50% of the maximum points achievable over all written exams, and
- need to be present at each assessment meeting for the assignments if requested.Grading scale:
89% <= P <= 100% Sehr Gut (1)
76% <= P < 89% Gut (2)
63% <= P < 76% Befriedigend (3)
50% <= P < 63% Genügend (4)
0% <= P < 50% Nicht Genügend (5)
Prüfungsstoff
All the topics covered by the course.
Literatur
Lecture Slides.
Required and recommended readings listed at the end of each chapter.
Selected Chapters of Manning et al. "Introduction to Information Retrieval", available at: http://nlp.stanford.edu/IR-book/information-retrieval-book.html
Additional literature/papers will be available through Moodle.
Required and recommended readings listed at the end of each chapter.
Selected Chapters of Manning et al. "Introduction to Information Retrieval", available at: http://nlp.stanford.edu/IR-book/information-retrieval-book.html
Additional literature/papers will be available through Moodle.
Zuordnung im Vorlesungsverzeichnis
Module: MRS MM2
Letzte Änderung: Fr 15.09.2023 18:07
Students are expected not only to understand the concepts but also to be able to apply the concepts, methods, and technologies and to use these to implement systems and applications.Please note the following recommendations for taking this course:
Take these courses first:
(MRE) Multimedia Representation & Encoding [recommended to be taken in Bachelor Program]
(MCM) Multimedia Content Management [recommended to be taken in Bachelor Program]Then take these courses after the ones mentioned above:
*(MRS) Multimedia Retrieval and Content-Based Search [recommended to be taken in Master Program]
(MST) Multimedia and Semantic Technologies [recommended to be taken in Master Program]