Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
052813 VU Scientific Data Management (2023S)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 13.02.2023 09:00 bis Do 23.02.2023 09:00
- Abmeldung bis Di 14.03.2023 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Mittwoch 01.03. 18:30 - 20:00 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 07.03. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Mittwoch 08.03. 18:30 - 20:00 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 14.03. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Mittwoch 15.03. 18:30 - 20:00 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 21.03. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Mittwoch 22.03. 18:30 - 20:00 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 28.03. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Mittwoch 29.03. 18:30 - 20:00 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 18.04. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Mittwoch 19.04. 18:30 - 20:00 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 25.04. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Mittwoch 26.04. 18:30 - 20:00 Hörsaal 3, Währinger Straße 29 3.OG
-
Dienstag
02.05.
15:00 - 16:30
Hörsaal 2, Währinger Straße 29 2.OG
Seminarraum 3, Währinger Straße 29 1.UG - Mittwoch 03.05. 18:30 - 20:00 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 09.05. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Mittwoch 10.05. 18:30 - 20:00 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 16.05. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Mittwoch 17.05. 18:30 - 20:00 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 23.05. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Mittwoch 24.05. 18:30 - 20:00 Hörsaal 3, Währinger Straße 29 3.OG
- Mittwoch 31.05. 18:30 - 20:00 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 06.06. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Mittwoch 07.06. 18:30 - 20:00 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 13.06. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Mittwoch 14.06. 18:30 - 20:00 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 20.06. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Mittwoch 21.06. 18:30 - 20:00 Hörsaal 3, Währinger Straße 29 3.OG
- Dienstag 27.06. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
-
Mittwoch
28.06.
18:30 - 20:00
Hörsaal 3, Währinger Straße 29 3.OG
Seminarraum 7, Währinger Straße 29 1.OG
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Active participation is a requirement for passing the course. The overall grade is composed as follows:30% Exercises (individual work)
30% Programming assignments (group work)
20% Written midterm exam (individual work)
20% Written final exam (individual work)
30% Programming assignments (group work)
20% Written midterm exam (individual work)
20% Written final exam (individual work)
Mindestanforderungen und Beurteilungsmaßstab
It is recommended to complete the following courses before attending:
- Algorithmen und Datenstrukturen
- Datenbanksysteme
- Software Engineering
- NetzwerktechnologienGrades will be given according to the following scheme:
100.00 - 87.00: 1
75.00 - 86.99: 2
63.00 - 74.99: 3
50.00 - 62.99: 4
00.00 - 49.99: 5
- Algorithmen und Datenstrukturen
- Datenbanksysteme
- Software Engineering
- NetzwerktechnologienGrades will be given according to the following scheme:
100.00 - 87.00: 1
75.00 - 86.99: 2
63.00 - 74.99: 3
50.00 - 62.99: 4
00.00 - 49.99: 5
Prüfungsstoff
All topics covered in class, the exercises, and the programming assignments.- Scientific Data and Feature Spaces
- Clustering
- Big Data Frameworks
- Searching Numerical Data
- Searching Sets
- Searching & Mining Graphs
- Analyzing Large Networks
- Clustering
- Big Data Frameworks
- Searching Numerical Data
- Searching Sets
- Searching & Mining Graphs
- Analyzing Large Networks
Literatur
J. Leskovec, A. Rajaraman, J. Ullman. Mining of Massive Datasets.
J. Han, M. Kamber, J.Pei.Data Mining: Concepts and Techniques.
I. H. Witten , E. Frank, M. A. Hall. Data Mining: Practical Machine Learning Tools and Techniques.Further literature and references to research papers will be provided via Moodle.
J. Han, M. Kamber, J.Pei.Data Mining: Concepts and Techniques.
I. H. Witten , E. Frank, M. A. Hall. Data Mining: Practical Machine Learning Tools and Techniques.Further literature and references to research papers will be provided via Moodle.
Zuordnung im Vorlesungsverzeichnis
Module: SDM
Letzte Änderung: Mo 19.06.2023 13:27
- Analysis of scientific data
- Interpretation and evaluation of results of the analysis process
- Choosing and applying techniques for structured data
- Implementation of scalable solutions for large amounts of data
- Support and advice of usersGeneric goals:
- Teamwork
- Improvement of programming skills
- Understanding of interplay in data mining and scientific computing