053612 VU Optimisation Methods for Data Science (2021W)
Prüfungsimmanente Lehrveranstaltung
Labels
GEMISCHT
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 13.09.2021 09:00 bis Mo 20.09.2021 09:00
- Abmeldung bis Do 14.10.2021 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Montag 04.10. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
- Donnerstag 07.10. 11:30 - 12:15 Seminarraum 7, Währinger Straße 29 1.OG
- Montag 11.10. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
- Donnerstag 14.10. 11:30 - 12:15 Seminarraum 7, Währinger Straße 29 1.OG
- Montag 18.10. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
- Donnerstag 21.10. 11:30 - 12:15 Seminarraum 7, Währinger Straße 29 1.OG
- Montag 25.10. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
- Donnerstag 28.10. 11:30 - 12:15 Seminarraum 7, Währinger Straße 29 1.OG
- Donnerstag 04.11. 11:30 - 12:15 Seminarraum 7, Währinger Straße 29 1.OG
- Montag 08.11. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
- Donnerstag 11.11. 11:30 - 12:15 Seminarraum 7, Währinger Straße 29 1.OG
- Montag 15.11. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
- Donnerstag 18.11. 11:30 - 12:15 Seminarraum 7, Währinger Straße 29 1.OG
- Montag 22.11. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
- Donnerstag 25.11. 11:30 - 12:15 Seminarraum 7, Währinger Straße 29 1.OG
- Montag 29.11. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
- Donnerstag 02.12. 11:30 - 12:15 Seminarraum 7, Währinger Straße 29 1.OG
- Montag 06.12. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
- Donnerstag 09.12. 11:30 - 12:15 Seminarraum 7, Währinger Straße 29 1.OG
- Montag 13.12. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
- Donnerstag 16.12. 11:30 - 12:15 Seminarraum 7, Währinger Straße 29 1.OG
- Montag 10.01. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
- Donnerstag 13.01. 11:30 - 12:15 Seminarraum 7, Währinger Straße 29 1.OG
- Montag 17.01. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
- Donnerstag 20.01. 11:30 - 12:15 Seminarraum 7, Währinger Straße 29 1.OG
- Montag 24.01. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
- Donnerstag 27.01. 11:30 - 12:15 Seminarraum 7, Währinger Straße 29 1.OG
- Montag 31.01. 09:45 - 11:15 Seminarraum 7, Währinger Straße 29 1.OG
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
(1) a take-home project
(2) an oral exam at the end of the semester (preferably in person; remotely if necessary)
(3) weekly exercises
(4) bonus points for active participation during classesRegarding the oral exam: please send me an email so we can arrange a date. Last lecture is on the 31st of January, but I will only talk about previous material / answer questions in this one. So the earliest possible day would be the 25th of January. Preferably I would like to do all the exams between the 1st of February and the 4th of February. If this does not work for you we can arrange something but the latest possible day will be end of February.
(2) an oral exam at the end of the semester (preferably in person; remotely if necessary)
(3) weekly exercises
(4) bonus points for active participation during classesRegarding the oral exam: please send me an email so we can arrange a date. Last lecture is on the 31st of January, but I will only talk about previous material / answer questions in this one. So the earliest possible day would be the 25th of January. Preferably I would like to do all the exams between the 1st of February and the 4th of February. If this does not work for you we can arrange something but the latest possible day will be end of February.
Mindestanforderungen und Beurteilungsmaßstab
Exam: 50%
Project: 25%
Exercises: 25%Grades:0-53: nicht genuegend/fail (5)
54-65: genuegend/pass (4)
66-77: befriedigend/satisfactory (3)
78-89: gut/good (2)
90%-100%: sehr gut/excellent (1)
Project: 25%
Exercises: 25%Grades:0-53: nicht genuegend/fail (5)
54-65: genuegend/pass (4)
66-77: befriedigend/satisfactory (3)
78-89: gut/good (2)
90%-100%: sehr gut/excellent (1)
Prüfungsstoff
all material covered during the lecture
Literatur
SlidesOptimization for Machine Learning lecture notes by Martin Jaggi EPFL and Bernd Gärtner, ETH
https://raw.githubusercontent.com/epfml/OptML_course/master/lecture_notes/lecture-notes.pdfStephen Boyd and Lieven Vandenberghe.
Convex Optimization.
https://web.stanford.edu/~boyd/cvxbook/.
https://raw.githubusercontent.com/epfml/OptML_course/master/lecture_notes/lecture-notes.pdfStephen Boyd and Lieven Vandenberghe.
Convex Optimization.
https://web.stanford.edu/~boyd/cvxbook/.
Zuordnung im Vorlesungsverzeichnis
Modul: OMD
Letzte Änderung: Di 07.12.2021 15:28
Additionally it will be streamed through a BigBlueButton session as well (see the moodle course). Either way presence is not mandatory, but recommended and I will put the slides online.This course will give an overview of modern optimization methods, for applications in data science. We will focus on algorithms which scale to large datasets.Contents:
- Overview of different fields and methods
- the role of convexity
- first order methods, (stochastic) gradient descent
- connection of these methods to related fields
- online optimization
- saddle point problems and games