053630 SE Research Seminar (2023W)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mi 13.09.2023 09:00 bis Mi 20.09.2023 09:00
- Abmeldung bis Sa 14.10.2023 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Donnerstag 12.10. 15:00 - 16:30 Seminarraum 10, Kolingasse 14-16, OG01
- Donnerstag 19.10. 15:00 - 16:30 Seminarraum 10, Kolingasse 14-16, OG01
- Donnerstag 09.11. 15:00 - 16:30 Seminarraum 10, Kolingasse 14-16, OG01
- Donnerstag 16.11. 15:00 - 16:30 Seminarraum 10, Kolingasse 14-16, OG01
- Donnerstag 23.11. 15:00 - 16:30 Seminarraum 10, Kolingasse 14-16, OG01
- Donnerstag 30.11. 15:00 - 16:30 Seminarraum 10, Kolingasse 14-16, OG01
- Donnerstag 07.12. 15:00 - 16:30 Seminarraum 10, Kolingasse 14-16, OG01
- Donnerstag 14.12. 15:00 - 16:30 Seminarraum 10, Kolingasse 14-16, OG01
- Donnerstag 11.01. 15:00 - 16:30 Seminarraum 10, Kolingasse 14-16, OG01
- Donnerstag 18.01. 15:00 - 16:30 Seminarraum 10, Kolingasse 14-16, OG01
- Donnerstag 25.01. 15:00 - 16:30 Seminarraum 10, Kolingasse 14-16, OG01
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Part I: Paper presentations
Paper presentation (20%)
Literature review (10%)
Summarization to a layperson (10%)
Future research (10%)Part II: Coding exercises
A1 Introduction to data science research (10%)
A2 Data preprocessing and visualization (10%)
A3 Machine learning algorithms (10%)
A4 Applied data science project (20%)
Paper presentation (20%)
Literature review (10%)
Summarization to a layperson (10%)
Future research (10%)Part II: Coding exercises
A1 Introduction to data science research (10%)
A2 Data preprocessing and visualization (10%)
A3 Machine learning algorithms (10%)
A4 Applied data science project (20%)
Mindestanforderungen und Beurteilungsmaßstab
Passing grades on the presentation and the last assignment, A4, are mandatory for an overall passing grade. Additionally, you are allowed to have up to two unexcused absences.
Prüfungsstoff
See above & the reading list below.
Literatur
A list of topics and the respective scientific papers will be made available via Moodle and discussed during the seminar's first session on 12.10.2023.
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Do 21.09.2023 10:07
and methods used in applied data science research and get a sense of the process involved in applying these tools to real-world problems.Goals of part 1
By presenting a published research work, participants learn about the latest developments and challenges in fields such as machine learning, natural language processing, computer vision, mathematical aspects of deep learning, applied data science, and other related areas. In particular, students learn how to present and identify a research question, communicate results, and critically evaluate the quality and relevance of a paper. The seminar aims to give attendees a thorough comprehension of the research process by having multiple students actively engage in the presentation of a scholarly paper. Each individual will be assigned one of three distinct roles, each emphasizing a specific facet of the presented work, enriching the discussion and understanding. These roles include:
1. Conducting a literature review of related works.
2. Summarising the presented material for a non-specialist audience (layperson).
3. Identifying potential avenues for future research or practical applications.
Through this approach, attendees will be exposed to various aspects of the research process, including reviewing existing literature, effectively communicating technical concepts, and recognizing opportunities for future study.Goals of part 2
The research seminar’s coding portion is divided into four programming exercises posted and graded throughout the semester. The exercises are structured as follows:
A1: Introduction to data science research: This exercise aims to show how to set up a programming environment and complete basic programming tasks.
A2: Data preprocessing and visualization: Attendees implement data preprocessing and visualization techniques using a programming language such as Python or R.
A3: Machine learning algorithms: The goal is to implement and compare the performance of different machine learning algorithms on a dataset.
A4: Applied data science project: Using the skills learned in the previous sessions, participants will be expected to collect and clean data, run experiments, and use effective visualizations to explore and communicate their results in an oral presentation.