Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
053630 SE Research Seminar (2024W)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Fr 13.09.2024 09:00 bis Fr 20.09.2024 09:00
- Abmeldung bis Mo 14.10.2024 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Donnerstag 03.10. 15:00 - 16:30 PC-Seminarraum 3, Kolingasse 14-16, OG02 (Vorbesprechung)
- Donnerstag 24.10. 15:00 - 16:30 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 31.10. 13:15 - 16:30 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 07.11. 13:15 - 16:30 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 14.11. 13:15 - 16:30 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 21.11. 15:00 - 16:30 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 28.11. 13:15 - 16:30 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 05.12. 13:15 - 16:30 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 12.12. 13:15 - 16:30 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 09.01. 13:15 - 16:30 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 16.01. 13:15 - 16:30 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 23.01. 13:15 - 16:30 PC-Seminarraum 3, Kolingasse 14-16, OG02
- Donnerstag 30.01. 13:15 - 16:30 PC-Seminarraum 3, Kolingasse 14-16, OG02
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Part I: Paper presentations
Paper pitch presentation (15%)
Final paper presentation (35%)Part II: Coding exercises
Accounts for a total of 50% of the final grade (further subdivided by individual assignments). This portion of the grade depends on the total number of completed exercises alongside a successful presentation of one's work in front of the class.
Paper pitch presentation (15%)
Final paper presentation (35%)Part II: Coding exercises
Accounts for a total of 50% of the final grade (further subdivided by individual assignments). This portion of the grade depends on the total number of completed exercises alongside a successful presentation of one's work in front of the class.
Mindestanforderungen und Beurteilungsmaßstab
Half the achievable points are mandatory for an overall passing grade. Additionally, you are allowed to have up to two unexcused absences.The grading scale for the course will be:
1: at least 87.5%
2: at least 75.0%
3: at least 62.5%
4: at least 50.0%
1: at least 87.5%
2: at least 75.0%
3: at least 62.5%
4: at least 50.0%
Prüfungsstoff
See above & the reading list below.
Literatur
A list of topics and the respective scientific papers will be made available via Moodle and discussed during the seminar's first session on 03.10.2024.
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Mi 11.09.2024 11:25
and methods used in applied data science research to get a sense of the process involved in applying these tools to real-world problems.Goals of Part 1
By presenting a published research work, participants learn about the latest developments and challenges in fields such as machine learning, natural language processing, computer vision, mathematical aspects of deep learning, applied data science, and other related areas. In particular, students learn how to present and identify a research question, communicate results, and critically evaluate the quality and relevance of a paper.Goals of Part 2
The research seminar’s coding portion is divided into four programming exercises posted and graded throughout the semester. The students are randomly selected to present their exercises in class, where their work is evaluated.