122049 PS Proseminar Linguistics 2 (2020S)
Language and Artificial Intelligence
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mi 19.02.2020 00:00 bis Di 25.02.2020 23:59
- Abmeldung bis Do 30.04.2020 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Donnerstag 05.03. 14:00 - 16:00 Raum 2 Anglistik UniCampus Hof 8 3E-EG-09
- Donnerstag 19.03. 14:00 - 16:00 Raum 2 Anglistik UniCampus Hof 8 3E-EG-09
- Donnerstag 26.03. 14:00 - 16:00 Raum 2 Anglistik UniCampus Hof 8 3E-EG-09
- Donnerstag 02.04. 14:00 - 16:00 Raum 2 Anglistik UniCampus Hof 8 3E-EG-09
- Donnerstag 23.04. 14:00 - 16:00 Raum 2 Anglistik UniCampus Hof 8 3E-EG-09
- Donnerstag 30.04. 14:00 - 16:00 Raum 2 Anglistik UniCampus Hof 8 3E-EG-09
- Donnerstag 07.05. 14:00 - 16:00 Raum 2 Anglistik UniCampus Hof 8 3E-EG-09
- Donnerstag 14.05. 14:00 - 16:00 Raum 2 Anglistik UniCampus Hof 8 3E-EG-09
- Donnerstag 28.05. 14:00 - 16:00 Raum 2 Anglistik UniCampus Hof 8 3E-EG-09
- Donnerstag 04.06. 14:00 - 16:00 Raum 2 Anglistik UniCampus Hof 8 3E-EG-09
- Donnerstag 18.06. 14:00 - 16:00 Raum 2 Anglistik UniCampus Hof 8 3E-EG-09
- Donnerstag 25.06. 14:00 - 16:00 Raum 2 Anglistik UniCampus Hof 8 3E-EG-09
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Short essay, online quiz, group project (presentation and proseminar paper), participation in class.
Mindestanforderungen und Beurteilungsmaßstab
Students understand basic concepts in semantic modeling in AI systems and the principles of word-embedding techniques as well as different fields of application. Furthermore, they can use online tools to perform simple computations with word embeddings.Assessment:
Short essay (10%)
Online quiz (15%)
Presentation (30%)
Proseminar paper (30%)
Participation in class (15%)
Pass grade: 60%
Short essay (10%)
Online quiz (15%)
Presentation (30%)
Proseminar paper (30%)
Participation in class (15%)
Pass grade: 60%
Prüfungsstoff
Literatur
Will be provided in class and includes (chapters of):Erk, K., 2012. Vector space models of word meaning and phrase meaning: A survey. Language and Linguistics Compass, 6(10), pp.635-653.
Frankish, K., & Ramsey, W. M. (Eds.). (2014). The Cambridge handbook of artificial intelligence. Cambridge University Press.
Hofstadter, D. R. (1995). Fluid concepts and creative analogies: Computer models of the fundamental mechanisms of thought. Basic books.
Rumelhart, David E., Bernard Widrow, and Michael A. Lehr. "The basic ideas in neural networks." Communications of the ACM 37.3 (1994): 87-93.
Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent trends in deep learning based natural language processing. IEEE Computational intelligence magazine, 13(3), 55-75.
Frankish, K., & Ramsey, W. M. (Eds.). (2014). The Cambridge handbook of artificial intelligence. Cambridge University Press.
Hofstadter, D. R. (1995). Fluid concepts and creative analogies: Computer models of the fundamental mechanisms of thought. Basic books.
Rumelhart, David E., Bernard Widrow, and Michael A. Lehr. "The basic ideas in neural networks." Communications of the ACM 37.3 (1994): 87-93.
Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent trends in deep learning based natural language processing. IEEE Computational intelligence magazine, 13(3), 55-75.
Zuordnung im Vorlesungsverzeichnis
Studium: BA 612;
Code/Modul: BA06.1;
Lehrinhalt: 12-2044
Code/Modul: BA06.1;
Lehrinhalt: 12-2044
Letzte Änderung: Mo 07.09.2020 15:20
In general, the course is intended to give insights into how AI language systems deal with semantics. This should help to critically reflect on these nowadays widely used digital techniques. The course does not require any previous knowledge in statistics, computer science or programming, nor is it supposed to be an introduction to any of these fields and methods. However, a basic knowledge of high-school mathematics will prove useful (basic calculus, percentages, vectors) to understand the methods discussed in the course.UPDATE: The first sessions of the course will be conducted via moodle. There will be online tasks and discussions.