136010 UE Introduction to DH Tools and Methods (2022W)
Prüfungsimmanente Lehrveranstaltung
Labels
DIGITAL
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Sa 03.09.2022 08:00 bis Di 27.09.2022 23:59
- Abmeldung bis Mo 31.10.2022 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
Detailed calendar will be published on Moodle.
- Freitag 07.10. 09:45 - 11:15 Hörsaal 2 Hauptgebäude, Tiefparterre Stiege 5 Hof 3
- Freitag 14.10. 09:45 - 11:15 Hörsaal 2 Hauptgebäude, Tiefparterre Stiege 5 Hof 3
- Freitag 21.10. 09:45 - 11:15 Hörsaal 2 Hauptgebäude, Tiefparterre Stiege 5 Hof 3
- Freitag 28.10. 09:45 - 11:15 Hörsaal 2 Hauptgebäude, Tiefparterre Stiege 5 Hof 3
- Freitag 04.11. 09:45 - 11:15 Hörsaal 2 Hauptgebäude, Tiefparterre Stiege 5 Hof 3
- Freitag 11.11. 09:45 - 11:15 Hörsaal 2 Hauptgebäude, Tiefparterre Stiege 5 Hof 3
- Freitag 18.11. 09:45 - 11:15 Hörsaal 2 Hauptgebäude, Tiefparterre Stiege 5 Hof 3
- Freitag 25.11. 09:45 - 11:15 Hörsaal 2 Hauptgebäude, Tiefparterre Stiege 5 Hof 3
- Freitag 02.12. 09:45 - 11:15 Hörsaal 2 Hauptgebäude, Tiefparterre Stiege 5 Hof 3
- Freitag 09.12. 09:45 - 11:15 Hörsaal 2 Hauptgebäude, Tiefparterre Stiege 5 Hof 3
- Freitag 16.12. 09:45 - 11:15 Hörsaal 2 Hauptgebäude, Tiefparterre Stiege 5 Hof 3
- Freitag 13.01. 09:45 - 11:15 Hörsaal 2 Hauptgebäude, Tiefparterre Stiege 5 Hof 3
- Freitag 20.01. 09:45 - 11:15 Hörsaal 2 Hauptgebäude, Tiefparterre Stiege 5 Hof 3
- Freitag 27.01. 09:45 - 11:15 Hörsaal 2 Hauptgebäude, Tiefparterre Stiege 5 Hof 3
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
The course is aimed at providing students with the skills necessary to understand the sheer potential of the digital methods for the humanities, using the Python Programming Language for a handful of common tasks in the domain. The course will present a broad overview of methods and tools, specifically covering the following: OCR & Natural Language Processing (NLP) Pipelines, Visualization & Dashboards, Spatial Analysis, Image Analysis, Social Network Analysis (SNA), Sentiment Analysis, SQL and NoSQL Database Management. The course approach is both theoretical and practical, with an intense load of hands-on exercises. The students are expected to have familiarity with digital environments, and previous practice with programming is desired, but not mandatory.
Art der Leistungskontrolle und erlaubte Hilfsmittel
Course evaluation will be a combination of in-class participation (30%), weekly homework assignments (40%), and the final project (30%).
Mindestanforderungen und Beurteilungsmaßstab
Attendance is required; regular participation is the key to completing the course; all students must provide their computing environment; homework assignments must be submitted on time (some can be completed later as a part of the final project, but this must be discussed with the instructor whenever the issue arises); the final project must be submitted on time.
Prüfungsstoff
There is no examination for the course.
Literatur
Learning Python, 5th Edition by Mark Lutz, O'Reilly Media, 2013. ISBN 978-1-4493-5573-9.Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython by Wes McKinny, O'Reilly Media, 2012. ISBN 978-1-4493-1979-3Github Repository - https://github.com/rsouza/Python_CourseProgramming historian → relevant courses
https://programminghistorian.org/en/lessons/TED Talk - https://www.ted.com/talks/reshma_saujani_teach_girls_bravery_not_perfection
https://programminghistorian.org/en/lessons/TED Talk - https://www.ted.com/talks/reshma_saujani_teach_girls_bravery_not_perfection
Zuordnung im Vorlesungsverzeichnis
DH-S I
Letzte Änderung: Do 04.07.2024 00:13