160167 UE Web APIs and large language models in humanities research (2023W)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 11.09.2023 08:00 bis Do 28.09.2023 23:59
- Abmeldung bis Di 31.10.2023 23:59
Details
max. 30 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Donnerstag 12.10. 18:30 - 20:00 Hörsaal 1 Sensengasse 3a 1.OG
- Donnerstag 19.10. 18:30 - 20:00 Hörsaal 1 Sensengasse 3a 1.OG
- Donnerstag 09.11. 18:30 - 20:00 Hörsaal 1 Sensengasse 3a 1.OG
- Donnerstag 16.11. 18:30 - 20:00 Hörsaal 1 Sensengasse 3a 1.OG
- Donnerstag 23.11. 18:30 - 20:00 Hörsaal 1 Sensengasse 3a 1.OG
- Donnerstag 30.11. 18:30 - 20:00 Hörsaal 1 Sensengasse 3a 1.OG
- Donnerstag 07.12. 18:30 - 20:00 Hörsaal 1 Sensengasse 3a 1.OG
- Donnerstag 14.12. 18:30 - 20:00 Hörsaal 1 Sensengasse 3a 1.OG
- Donnerstag 11.01. 18:30 - 20:00 Hörsaal 1 Sensengasse 3a 1.OG
- Donnerstag 18.01. 18:30 - 20:00 Hörsaal 1 Sensengasse 3a 1.OG
- Donnerstag 25.01. 18:30 - 20:00 Hörsaal 1 Sensengasse 3a 1.OG
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
- Programming exercises 60%
- Project 40%
- Project 40%
Mindestanforderungen und Beurteilungsmaßstab
>= 90% very good (1)
>= 80% good (2)
>= 65% satisfactory (3)
>= 50% sufficient (4)
< 50% not sufficient (5)
>= 80% good (2)
>= 65% satisfactory (3)
>= 50% sufficient (4)
< 50% not sufficient (5)
Prüfungsstoff
Students must:
- Demonstrate proficiency in the technologies via the coding assignments, and
- Complete a project which conducts non-trivial processing on their chosen data source in a "proof-of-concept" manner. This means that while the essential steps should be present and the workflow should yield the intended type of outcome, the results are not required to be flawless or ready for practical application.
- Demonstrate proficiency in the technologies via the coding assignments, and
- Complete a project which conducts non-trivial processing on their chosen data source in a "proof-of-concept" manner. This means that while the essential steps should be present and the workflow should yield the intended type of outcome, the results are not required to be flawless or ready for practical application.
Literatur
Students are encouraged to self-study through online resources, particularly those related to LLMs, prompt engineering, and notably, LangChain.
Zuordnung im Vorlesungsverzeichnis
MA DH: DH Skills II; S-DH Cluster 1
BA Sprachwissenschaft: Alternative Erweiterung
BA Sprachwissenschaft: Alternative Erweiterung
Letzte Änderung: Do 21.09.2023 17:27
*Bring your own computer:* Participants must bring their personal computing devices to the sessions and should be proficient in installing PyPI packages via pip or conda on these devices.
*Bring your own data:* Participants should select a data source, either of academic or personal relevance, that they want to explore using Web API and LLM technologies. As a guideline, the data should be in a machine-readable format and exceed 150,000 characters (around 2x Le Petit Prince).
*Procure your API key:* It is the responsibility of students to register for their API access and bear any associated costs. The services will primarily involve OpenAI, but also other APIs tailored to their specific project requirements. The total expenditure throughout the term is typically under 20€.