Universität Wien FIND

Bedingt durch die COVID-19-Pandemie können kurzfristige Änderungen bei Lehrveranstaltungen und Prüfungen (z.B. Absage von Vor-Ort-Lehre und Umstellung auf Online-Prüfungen) erforderlich sein. Melden Sie sich für Lehrveranstaltungen/Prüfungen über u:space an, informieren Sie sich über den aktuellen Stand auf u:find und auf der Lernplattform moodle.

Weitere Informationen zum Lehrbetrieb vor Ort finden Sie unter https://studieren.univie.ac.at/info.

180078 SE Philosophie der Geometrie (2020S)

5.00 ECTS (2.00 SWS), SPL 18 - Philosophie
Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Details

max. 30 Teilnehmer*innen
Sprache: Deutsch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Mittwoch 11.03. 11:30 - 13:00 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
Mittwoch 18.03. 11:30 - 13:00 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
Mittwoch 25.03. 11:30 - 13:00 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
Mittwoch 01.04. 11:30 - 13:00 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
Mittwoch 22.04. 11:30 - 13:00 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
Mittwoch 29.04. 11:30 - 13:00 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
Mittwoch 06.05. 11:30 - 13:00 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
Mittwoch 13.05. 11:30 - 13:00 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
Mittwoch 20.05. 11:30 - 13:00 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
Mittwoch 27.05. 11:30 - 13:00 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
Mittwoch 03.06. 11:30 - 13:00 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
Mittwoch 10.06. 11:30 - 13:00 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
Mittwoch 17.06. 11:30 - 13:00 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
Mittwoch 24.06. 11:30 - 13:00 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Die Lehrveranstaltung stellt ein Forschungsseminar zur Philosophie der Geometrie dar. Folgende Themen werden im Seminar behandelt: Kants Philosophie der Geometrie; philosophische Rezeption der nicht-Euklidischen Geometrie (Helmholtz, Poincaré); Hilberts moderne Axiomatik; die Frege-Hilbert Korrespondenz; Philosophie der Geometrie bei Russell, Carnap und Reichenbach; aktuelle Debatten (Geometrie und Modelltheorie, "Reinheit der Methoden", Abstraktionsprinzipien).

Art der Leistungskontrolle und erlaubte Hilfsmittel

Voraussetzung für den Zeugniserwerb ist die regelmäßige und aktive Teilnahme an der Lehrveranstaltung (zwei unentschuldigte Fehlstunden sind möglich), die Übernahme eines Referats sowie das Verfassen einer schriftlichen Abschlussarbeit (im Ausmaß von ca. 15-20 Seiten, Umfang von ca. 25.000 bis 30.000 Zeichen in Times New Roman, Schriftgröße 12pt, Zeilenabstand 1,5).

Die Abschlussarbeit senden Sie bitte an:
Herrn Ass.-Prof. Mag. Mag. Dr. Georg Schiemer: georg.schiemer@univie.ac.at und an
Herrn Florian Kolowrat: florian.kolowrat@univie.ac.at

Mindestanforderungen und Beurteilungsmaßstab

Prüfungsstoff

Literatur

- Frege, G. (1980): Gottlob Freges Briefwechsel mit D. Hilbert, E. Husserl, B. Russell sowie ausgewählte Einzelbriefe Freges; Gottfried Gabriel, Friedrich Kambartel and Christian Thiel (eds.), Meiner Verlag
- Hallett, M. (2010): “Frege and Hilbert”, in: The Cambridge Companion to Frege, Tom Ricketts and Michael Potter (eds.), Cambridge: Cambridge University Press, pp. 413–46
- Hilbert, D. (1868): Grundlagen der Geometrie. Leipzig: Teubner, 10th edition.
- Klein, F. (1872): Vergleichende Betrachtungen über neuere geometrische Forschungen. Erlangen: Deichert.
- Mancosu, P. (Ed.) (2008): The Philosophy of Mathematical Practice, Oxford University Press
- Nagel, E., (1939):The formation of modern conceptions of formal logic in the development of geometry, Osiris 7, pp. 142-223.
- Poincaré, H., (1905): Science and Hypothesis, New York: Dover
-Reck, E. & Price, M. (2000): Structures and Structuralism in Contemporary Philosophy of Mathematics, Synthese
- Reck, E. & Schiemer, G. (2019): Mathematical Structuralism, Stanford Encyclopedia of Philosophy,(forthcoming)
- Reck, E. & Schiemer, G. (2020): The Prehistory of Mathematical Structuralism, Oxford University Press, (forthcoming)
-Shapiro, S. (1997): Philosophy of Mathematics: Structure and Ontology, Oxford University Press
-Torretti, R., (1978): Philosophy of Geometry from Riemann to Poincaré, Springer.

(Eine vollständige Literaturliste wird zu Beginn der LV zur Verfügung gestellt.)

Zuordnung im Vorlesungsverzeichnis

Letzte Änderung: Mo 07.09.2020 15:21