Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
180078 SE Philosophie der Geometrie (2020S)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Fr 14.02.2020 09:00 bis Mo 24.02.2020 10:00
- Anmeldung von Mi 26.02.2020 09:00 bis Mo 02.03.2020 10:00
- Abmeldung bis Do 30.04.2020 23:59
Details
max. 30 Teilnehmer*innen
Sprache: Deutsch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Mittwoch 11.03. 11:30 - 13:00 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
- Mittwoch 18.03. 11:30 - 13:00 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
- Mittwoch 25.03. 11:30 - 13:00 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
- Mittwoch 01.04. 11:30 - 13:00 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
- Mittwoch 22.04. 11:30 - 13:00 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
- Mittwoch 29.04. 11:30 - 13:00 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
- Mittwoch 06.05. 11:30 - 13:00 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
- Mittwoch 13.05. 11:30 - 13:00 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
- Mittwoch 20.05. 11:30 - 13:00 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
- Mittwoch 27.05. 11:30 - 13:00 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
- Mittwoch 03.06. 11:30 - 13:00 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
- Mittwoch 10.06. 11:30 - 13:00 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
- Mittwoch 17.06. 11:30 - 13:00 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
- Mittwoch 24.06. 11:30 - 13:00 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Die Lehrveranstaltung stellt ein Forschungsseminar zur Philosophie der Geometrie dar. Folgende Themen werden im Seminar behandelt: Kants Philosophie der Geometrie; philosophische Rezeption der nicht-Euklidischen Geometrie (Helmholtz, Poincaré); Hilberts moderne Axiomatik; die Frege-Hilbert Korrespondenz; Philosophie der Geometrie bei Russell, Carnap und Reichenbach; aktuelle Debatten (Geometrie und Modelltheorie, "Reinheit der Methoden", Abstraktionsprinzipien).
Art der Leistungskontrolle und erlaubte Hilfsmittel
Voraussetzung für den Zeugniserwerb ist die regelmäßige und aktive Teilnahme an der Lehrveranstaltung (zwei unentschuldigte Fehlstunden sind möglich), die Übernahme eines Referats sowie das Verfassen einer schriftlichen Abschlussarbeit (im Ausmaß von ca. 15-20 Seiten, Umfang von ca. 25.000 bis 30.000 Zeichen in Times New Roman, Schriftgröße 12pt, Zeilenabstand 1,5).Die Abschlussarbeit senden Sie bitte an:
Herrn Ass.-Prof. Mag. Mag. Dr. Georg Schiemer: georg.schiemer@univie.ac.at und an
Herrn Florian Kolowrat: florian.kolowrat@univie.ac.at
Herrn Ass.-Prof. Mag. Mag. Dr. Georg Schiemer: georg.schiemer@univie.ac.at und an
Herrn Florian Kolowrat: florian.kolowrat@univie.ac.at
Mindestanforderungen und Beurteilungsmaßstab
Prüfungsstoff
Literatur
- Frege, G. (1980): Gottlob Freges Briefwechsel mit D. Hilbert, E. Husserl, B. Russell sowie ausgewählte Einzelbriefe Freges; Gottfried Gabriel, Friedrich Kambartel and Christian Thiel (eds.), Meiner Verlag
- Hallett, M. (2010): “Frege and Hilbert”, in: The Cambridge Companion to Frege, Tom Ricketts and Michael Potter (eds.), Cambridge: Cambridge University Press, pp. 413–46
- Hilbert, D. (1868): Grundlagen der Geometrie. Leipzig: Teubner, 10th edition.
- Klein, F. (1872): Vergleichende Betrachtungen über neuere geometrische Forschungen. Erlangen: Deichert.
- Mancosu, P. (Ed.) (2008): The Philosophy of Mathematical Practice, Oxford University Press
- Nagel, E., (1939):The formation of modern conceptions of formal logic in the development of geometry, Osiris 7, pp. 142-223.
- Poincaré, H., (1905): Science and Hypothesis, New York: Dover
-Reck, E. & Price, M. (2000): Structures and Structuralism in Contemporary Philosophy of Mathematics, Synthese
- Reck, E. & Schiemer, G. (2019): Mathematical Structuralism, Stanford Encyclopedia of Philosophy,(forthcoming)
- Reck, E. & Schiemer, G. (2020): The Prehistory of Mathematical Structuralism, Oxford University Press, (forthcoming)
-Shapiro, S. (1997): Philosophy of Mathematics: Structure and Ontology, Oxford University Press
-Torretti, R., (1978): Philosophy of Geometry from Riemann to Poincaré, Springer.(Eine vollständige Literaturliste wird zu Beginn der LV zur Verfügung gestellt.)
- Hallett, M. (2010): “Frege and Hilbert”, in: The Cambridge Companion to Frege, Tom Ricketts and Michael Potter (eds.), Cambridge: Cambridge University Press, pp. 413–46
- Hilbert, D. (1868): Grundlagen der Geometrie. Leipzig: Teubner, 10th edition.
- Klein, F. (1872): Vergleichende Betrachtungen über neuere geometrische Forschungen. Erlangen: Deichert.
- Mancosu, P. (Ed.) (2008): The Philosophy of Mathematical Practice, Oxford University Press
- Nagel, E., (1939):The formation of modern conceptions of formal logic in the development of geometry, Osiris 7, pp. 142-223.
- Poincaré, H., (1905): Science and Hypothesis, New York: Dover
-Reck, E. & Price, M. (2000): Structures and Structuralism in Contemporary Philosophy of Mathematics, Synthese
- Reck, E. & Schiemer, G. (2019): Mathematical Structuralism, Stanford Encyclopedia of Philosophy,(forthcoming)
- Reck, E. & Schiemer, G. (2020): The Prehistory of Mathematical Structuralism, Oxford University Press, (forthcoming)
-Shapiro, S. (1997): Philosophy of Mathematics: Structure and Ontology, Oxford University Press
-Torretti, R., (1978): Philosophy of Geometry from Riemann to Poincaré, Springer.(Eine vollständige Literaturliste wird zu Beginn der LV zur Verfügung gestellt.)
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Mo 07.09.2020 15:21