Universität Wien FIND

Bedingt durch die COVID-19-Pandemie können kurzfristige Änderungen bei Lehrveranstaltungen und Prüfungen (z.B. Absage von Vor-Ort-Lehre und Umstellung auf Online-Prüfungen) erforderlich sein. Melden Sie sich für Lehrveranstaltungen/Prüfungen über u:space an, informieren Sie sich über den aktuellen Stand auf u:find und auf der Lernplattform moodle.

Regelungen zum Lehrbetrieb vor Ort inkl. Eintrittstests finden Sie unter https://studieren.univie.ac.at/info.

Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.

180146 SE Introduction to Cognitive Science II: Key Topics in Cognitive Science (2018S)

5.00 ECTS (2.00 SWS), SPL 18 - Philosophie
Prüfungsimmanente Lehrveranstaltung

1.Termin (Vorbesprechung): Mo 5. März 2018, 9:00 - 11:00
HS 2i d. Inst. f. Philosophie, NIG, 2. Stock

Weitere Termine werden bei der Vorbesprechung bekannt gegeben!

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 25 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Mittwoch 14.03. 09:45 - 13:00 Hörsaal 3B NIG 3.Stock
Mittwoch 11.04. 09:45 - 13:00 Hörsaal 3B NIG 3.Stock
Freitag 13.04. 09:45 - 13:00 Hörsaal 2i NIG 2.Stock
Mittwoch 18.04. 09:45 - 13:00 Hörsaal 3B NIG 3.Stock
Freitag 20.04. 09:45 - 13:00 Hörsaal 2i NIG 2.Stock
Mittwoch 25.04. 09:45 - 13:00 Hörsaal 3B NIG 3.Stock
Freitag 27.04. 09:45 - 13:00 Hörsaal 2i NIG 2.Stock
Freitag 04.05. 09:45 - 13:00 Hörsaal 2i NIG 2.Stock

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Ziel des Seminars is es, den Studierenden wichtige Grundlagen für die wissenschaftliche Arbeit im Feld der Kognitionswissenschaften zu vermitteln. Dazu gehört vor allem die kritische Durchsicht bestehender wissenschaftlicher Literatur. Das Seminar konzentriert sich auf ausgewählte Probleme der Philosophie der Kognitionswissenschaften, vor allm Computationalismus, Repräsentation, Intelligenz, Problemlösen, Logik und Sprache.
Als Ergebnis des Seminars sollen Studierende in der Lage sein, relevante Literatur on- und offline zu suchen, ausgewählte Literatur zu einzelnen wichtigen philosophischen Grundlagen der Kognitionswissenschaften zu studieren, zu vergleichen und sie in historischen Kontext zu setzen, zusammenzufassen, zu präsentieren und zu diskutieren.

Art der Leistungskontrolle und erlaubte Hilfsmittel

presentation, team/project work, participation in discussions, participation in the tutorial

Mindestanforderungen und Beurteilungsmaßstab

" Advanced knowledge and understanding of central questions, key concepts, and approaches in cognitive science in their historical context
" Knowledge and understanding of key notions of philosophy of science and their implications for cognitive science
" Ability to reflect upon, compare, and relate different disciplinary approaches in terms of their respective aims, key-concepts, and methods
" Knowledge and understanding of different models of interdisciplinarity
" Ability to read, present, and discuss primary scientific literature
" Ability to organise work in physical and virtual environments
" Ability to sharpen/focus/channel analytical and critical thinking
" Ability to solve problems in an interdisciplinary team
" Ability to organise project work in an interdisciplinary team
" Ability to relate findings and methods of cognitive science to ethical questions
" Ability to reflect upon personal competences and develop individual motivation and interests

Prüfungsstoff

Introductory articles
P. Thagard, Cognitive Science. In: The Stanford Encyclopedia of Philosophy, Fall 2014 Edition, Edward N. Zalta (ed.)
https://plato.stanford.edu/archives/fall2014/entries/cognitive-science/
Gideon Lewis-Kraus (2016) The great A.I. awakening. In: The New York Times Magazine, December 14, 2016, New York.
E.A. Lee, Plato and the Nerd. MIT Press, 2017.
Detailed reading list (target articles)
Deep learning
Yann LeCun, Yoshua Bengio, Geoffrey Hinton (2015) Deep learning. Nature Vol. 521, pp. 436-444. https://www.researchgate.net/publication/277411157_Deep_Learning
Theory-free science
Chris Anderson, The end of theory. Wired Magazine. https://www.wired.com/2008/06/pb-theory/
Understanding computer-generated models
J. Yosinski et al., Understanding neural networks through deep visualization, Deep Learning Workshop; 31st Int. Conf. Machine Learning, 2015. http://yosinski.com/media/papers/Yosinski__2015__ICML_DL__Understanding_Neural_Networks_Through_Deep_Visualization__.pdf
Robotics and autonomy
D.Vernon et al., Embodied cognition and circular causality: on the role of constitutive autonomy in the reciprocal coupling of perception and action. Frontiers in Psychology, 2015. https://www.frontiersin.org/articles/10.3389/fpsyg.2015.01660/full
Technoscience
Kastenhofer & Schmidt; Technoscientia est Potentia?: Contemplative, interventionist, constructionist and creationist idea(l)s in (techno)science, Poiesis & Praxis, Vol. 8 (2), 2011. https://link.springer.com/article/10.1007/s10202-011-0101-2
Creativity, art, and poiesis
Mark Coeckelbergh, The art, poetics, and grammar of technological innovation as practice, process, and performance. AI & Society, 2017. https://link.springer.com/article/10.1007/s00146-017-0714-7

Literatur

Extended reading list
Deep learning
Yann LeCun, Yoshua Bengio, Geoffrey Hinton (2015) Deep learning. Nature Vol. 521, pp. 436-444.
Olivier Temam, Enabling future progress in machine-learning. VLSI Circuits, 2016.
Collobert et al., Natural language processing (almost) from scratch. Journal of Machine Learning Research, 12, 2011.
Theory-free science
Chris Anderson, The end of theory. Wired Magazine.
Fulvio Mazzocchi, Could big data be the end of theory in science? Science & Society, 2015.
Byung-chul Han; Agonie des Eros. Matthes & Seitz, 2015.
Byung-chul Han; Die Errettung des Schönen. Fischer, 2015.
Understanding computer-generated models
J. Yosinski et al., Understanding neural networks through deep visualization, Deep Learning Workshop; 31st Int. Conf. Machine Learning, 2015
J. Burrell, How the machine 'thinks': Understanding opacity in machine learning algorithms. Big Data & Society, 2016,
Robotics and autonomy
D.Vernon et al., Embodied cognition and circular causality: on the role of constitutive autonomy in the reciprocal coupling of perception and action. Frontiers in Psychology, 2015.
T. Ziemke, On the role of emotion in biological and robotic autonomy; Biosystems, Vol. 91 (2), 2008.
Technoscience
Kastenhofer & Schmidt; Technoscientia est Potentia?: Contemplative, interventionist, constructionist and creationist idea(l)s in (techno)science, Poiesis & Praxis, Vol. 8 (2), 2011
G. Hottois, Technoscience et sagesse? In: Gramm et al. Ding und System, diaphanes, 2015.
Creativity, art, and poiesis
Mark Coeckelbergh, The art, poetics, and grammar of technological innovation as practice, process, and performance. AI & Society, 2017.
A. Roepstorff, J. Niewöhner, S. Beck; Enculturing brains through patterned practices, Neural Networks 23, 2010.
L.R.Varshney et al., A big data approach to computational creativity. arXiv:1311.1213v1 [cs.CY] 5 Nov 2013

Zuordnung im Vorlesungsverzeichnis

Letzte Änderung: Mo 07.09.2020 15:36