180148 VO+UE Tools in Cognitive Science I: From computation and programming to human centric digital sciences (2023W)
Prüfungsimmanente Lehrveranstaltung
Labels
VOR-ORT
Preparation meeting: Monday October 2nd, 2023, 9:00 - 11:00
HS 2i, NIG, Universitätsstrasse 7, 2nd floor
HS 2i, NIG, Universitätsstrasse 7, 2nd floor
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Fr 15.09.2023 00:00 bis Fr 29.09.2023 10:00
- Abmeldung bis Di 31.10.2023 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Lehrende
- Soheil Human
- Alenka Zumer (TutorIn)
Termine (iCal) - nächster Termin ist mit N markiert
- Donnerstag 05.10. 09:45 - 13:00 Hörsaal 3B NIG 3.Stock
- Donnerstag 12.10. 09:45 - 13:00 Hörsaal 3B NIG 3.Stock
- Donnerstag 19.10. 09:45 - 13:00 Hörsaal 3B NIG 3.Stock
- Donnerstag 09.11. 09:45 - 13:00 Hörsaal 3B NIG 3.Stock
- Donnerstag 16.11. 09:45 - 13:00 Hörsaal 3B NIG 3.Stock
- Donnerstag 23.11. 09:45 - 13:00 Hörsaal 3B NIG 3.Stock
- Donnerstag 30.11. 09:45 - 13:00 Hörsaal 3B NIG 3.Stock
- Donnerstag 07.12. 09:45 - 13:00 Hörsaal 3B NIG 3.Stock
- Donnerstag 14.12. 09:45 - 13:00 Hörsaal 3B NIG 3.Stock
- Donnerstag 11.01. 09:45 - 13:00 Hörsaal 3B NIG 3.Stock
- Donnerstag 18.01. 09:45 - 13:00 Hörsaal 3B NIG 3.Stock
- Donnerstag 25.01. 09:45 - 13:00 Hörsaal 3B NIG 3.Stock
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
The course will be graded on a basis of 100 points in total:• 100-87 points: Excellent (1)• 86-75 points: Good (2)• 74-63 points: Satisfactory (3)• 62-50 points: Sufficient (4)• 49-0 points: Unsatisfactory (5) (fail)
Mindestanforderungen und Beurteilungsmaßstab
Assessment criteria:• 10% Active participation• 25% Homework assignments and presentation (debriefing) of homework assignments • 50% In-class quizzes and final Exam 15% Final Project• A positive score (>50%) in each of the above criteria is required for passing the course.• Regular participation in at least 90% of sessions is obligatory.No materials or tools may be used or drawn upon during the quizzes and final exam
Prüfungsstoff
Exam questions will be based on what we discuss in class, the readings and the homework assignments.
Literatur
- Beecher, K. (2017). Computational Thinking: A beginner’s guide to problem-solving and programming (Illustrated edition). BCS, The Chartered Institute for IT.
- Bouras, A. S. (2019). Python and Algorithmic Thinking for the Complete Beginner (2nd Edition): Learn to Think Like a Programmer. Independently published.
- Farrell, S. (2018). Computational Modeling of Cognition and Behavior. Cambridge University Press.
- Curzon, P., & Mcowan, P. W. (2017). Power Of Computational Thinking, The: Games, Magic And Puzzles To Help You Become A Computational Thinker. WSPC.
- Jesús, S. D., & Martinez, D. (2020). Applied Computational Thinking with Python: Design algorithmic solutions for complex and challenging real-world problems. Packt Publishing.
- Maeda, J. (2019). How to Speak Machine: Computational Thinking for the Rest of Us. Portfolio.
- McKinney, W. (2017). Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython (2nd edition). O’Reilly UK Ltd.
- Miller, B. N., & Ranum, D. L. (2011). Problem Solving with Algorithms and Data Structures Using Python (002 edition). FRANKLIN BEEDLE & ASSOC.
- Zingaro, D. (2020). Algorithmic Thinking: A Problem-Based Introduction. No Starch Press.
- Géron, A. (2019). Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems (2nd ed edition). O’Reilly UK Ltd.Further literature will be announced in the course
- Bouras, A. S. (2019). Python and Algorithmic Thinking for the Complete Beginner (2nd Edition): Learn to Think Like a Programmer. Independently published.
- Farrell, S. (2018). Computational Modeling of Cognition and Behavior. Cambridge University Press.
- Curzon, P., & Mcowan, P. W. (2017). Power Of Computational Thinking, The: Games, Magic And Puzzles To Help You Become A Computational Thinker. WSPC.
- Jesús, S. D., & Martinez, D. (2020). Applied Computational Thinking with Python: Design algorithmic solutions for complex and challenging real-world problems. Packt Publishing.
- Maeda, J. (2019). How to Speak Machine: Computational Thinking for the Rest of Us. Portfolio.
- McKinney, W. (2017). Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython (2nd edition). O’Reilly UK Ltd.
- Miller, B. N., & Ranum, D. L. (2011). Problem Solving with Algorithms and Data Structures Using Python (002 edition). FRANKLIN BEEDLE & ASSOC.
- Zingaro, D. (2020). Algorithmic Thinking: A Problem-Based Introduction. No Starch Press.
- Géron, A. (2019). Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems (2nd ed edition). O’Reilly UK Ltd.Further literature will be announced in the course
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Do 05.10.2023 09:47
• basic concepts and challenges of digital sciences
• basic concepts of computation
• analytical, systemic and algorithmic thinking
• applied problem-solving skills
• working knowledge of programming (using Python), skills related to programming and application of programming in cognitive science
• practical skills related to design, implementation, and evaluation of computer-based empirical experiments, data collection, representation, analysis, visualisation, etc.
• basic understanding of the role of computer science in cognitive science
• basic understanding of human-centric approaches in computer science as well as cognitive science
• basic understanding of ethics and accountability in computer science as well as cognitive science____ COVID 19 Updates ____Considering the current developments related to COVID-19, the course will be held partially (or entirely) online (depending on the situation).The decisions/updates and detailed instructions will be announced via Moodle platform or email.Most of (or maybe all of) the communications, lectures, assignments, presentations, group-works, projects, evaluations, and exams will be done online.– Course mode:
–– Mixed/hybrid (online + in-person) or fully online– Teaching/learning methods:
– – Virtual/in-person synchronous course units,
– – Self-study with literature and online resources,
– – Virtual/in-person group-works,
– – Online/in-person exams,
– – Online/in-person presentations,
– – Virtual/in-person coaching/supervision sessions (if needed)
– – ...– Students are expected to participate in announced online/in-person sessions, online/in-person presentations, online/in-person exams, etc.
– Students are expected to construct private virtual communication means for their virtual group works.
– Students are expected to regularly check their emails as well as the course Moodle environment.
– Students are expected to follow all detailed instructions related to remote/in-person teaching.
– The assessments will be based on the regular assessment plans.