Universität Wien FIND

Auf Grund der COVID-19 Pandemie kann es bei Lehrveranstaltungen und Prüfungen auch kurzfristig zu Änderungen kommen. Informieren Sie sich laufend in u:find und checken Sie regelmäßig Ihre E-Mails.

Lesen Sie bitte die Informationen auf https://studieren.univie.ac.at/info.

180156 SE Wurzeln des Strukturalismus (2021W)

5.00 ECTS (2.00 SWS), SPL 18 - Philosophie
Prüfungsimmanente Lehrveranstaltung
DIGITAL
Mi 15.12. 11:30-13:00 Digital

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 25 Teilnehmer*innen
Sprache: Deutsch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Mittwoch 13.10. 11:30 - 13:00 Digital
Mittwoch 20.10. 11:30 - 13:00 Digital
Mittwoch 27.10. 11:30 - 13:00 Digital
Mittwoch 03.11. 11:30 - 13:00 Digital
Mittwoch 10.11. 11:30 - 13:00 Digital
Mittwoch 17.11. 11:30 - 13:00 Digital
Mittwoch 24.11. 11:30 - 13:00 Digital
Mittwoch 01.12. 11:30 - 13:00 Digital
Mittwoch 12.01. 11:30 - 13:00 Digital
Mittwoch 19.01. 11:30 - 13:00 Digital
Mittwoch 26.01. 11:30 - 13:00 Digital

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Das Seminar behandelt die mathematischen und philosophischen Ursprünge des mathematischen Strukturalismus, jener Position innerhalb der zeitgenössischen Philosophie der Mathematik, der zufolge mathematische Theorien ausschließlich abstrakte Strukturen beschreiben. Der Fokus wird dabei auf zwei historische Entwicklungslinien und deren Implikationen für die moderne philosophische Debatte gelegt: erstens, eine Reihe von konzeptuellen und methodischen Umbrüchen im Rahmen der Entwicklung der Geometrie zwischen 1860 und 1900, die einen allgemeinen “structuralist turn” innerhalb der Mathematik mit sich geführt haben. Die zweite Entwicklungslinie bezieht sich auf die frühe philosophische Reflexion dieser mathematischen Umbrüche in den wissenschaftstheoretischen Arbeiten von Rudolf Carnap, Moritz Schlick, Edmund Husserl und Ernst Cassirer (und anderen) zwischen 1900 und 1940.

Ziel des Seminars ist es, ein besseres Verständnis der mathematischen und philosophischen Vorgeschichte des mathematischen Strukturalismus im neunzehnten und in der ersten Hälfte des zwanzigsten Jahrhunderts zu entwickeln. Darüber hinaus sollen inhaltliche Berührungspunkte zwischen den philosophischen Beiträgen Carnap, Husserl und Cassirers und der modernen Strukturalismus-Debatte, insbesondere zu einem adäquaten “strukturalistischen” Verständnis der Ontologie und Epistemologie von mathematischen Objekten, analysiert werden.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Voraussetzung für den Zeugniserwerb ist die regelmäßige und aktive Teilnahme an der Lehrveranstaltung (zwei unentschuldigte Fehlstunden sind möglich), mögliche Übernahme eines Referats sowie das Verfassen einer schriftlichen Abschlussarbeit (im Ausmaß von ca. 15-20 Seiten, Umfang von ca. 25.000 bis 30.000 Zeichen in Times New Roman, Schriftgröße 12pt, Zeilenabstand 1,5). Die Abschlussarbeit senden Sie bitte an: Herrn Ass.-Prof. Mag. Mag. Dr. Georg Schiemer: georg.schiemer@univie.ac.at und an Herrn Florian Kolowrat: florian.kolowrat@univie.ac.at

Mindestanforderungen und Beurteilungsmaßstab

Abfassung einer Seminararbeit und Präsentation eines Referats im Rahmen der Lehrveranstaltung.

Beurteilungskriterien: Die Seminararbeit fließt zu 70% in die Beurteilung der Lehrveranstaltung ein, das Referat zu 30%.
„Alle Studierende, die einen Lehrveranstaltungsplatz erhalten haben, sind zu beurteilen, sofern sie sich nicht zeitgerecht abgemeldet haben (Abs. 5) oder unverzüglich nach Wegfall des Hindernisses einen wichtigen Grund für die Nichtdurchführung der Abmeldung glaubhaft machen.“ (§ 10, Abs. 6 der Satzung).

Nähere Informationen zu Umfang etc. von wissenschaftlichen Arbeiten finden sich auf der SSC Homepage unter folgendem link https://ssc-phil.univie.ac.at/studienorganisation/wissenschaftliches-arbeiten/#c195173

Prüfungsstoff

Sie dazu die obigen Angaben zum Beurteilungsmaßstab.

Literatur

Carnap, R. (1927): Eigentliche und uneigentliche Begriffe. Symposion, 1:355–374.
Cassirer, E. (1910): Substanzbegriffe und Funktionsbegriffe. Untersuchungen über die Grundfrage der Erkenntniskritik. Berlin: Springer.
Dedekind, R. (1888): Was sind und was sollen die Zahlen? Braunschweig: Vieweg.
Frege, G. (1980): Gottlob Freges Briefwechsel mit D. Hilbert, E. Husserl, B. Russell sowie ausgewählte Einzelbriefe Freges; Gottfried Gabriel, Friedrich Kambartel and Christian Thiel (eds.), Meiner Verlag
Hallett, M. (2010): “Frege and Hilbert”, in: The Cambridge Companion to Frege, Tom Ricketts and Michael Potter (eds.), Cambridge: Cambridge University Press, pp. 413–46
Hilbert, D. (1868): Grundlagen der Geometrie. Leipzig: Teubner, 10th edition.
Klein, F. (1872): Vergleichende Betrachtungen über neuere geometrische Forschungen. Erlangen: Deichert.
Reck, E. & Schiemer, G. (2019a): Mathematical Structuralism, Stanford Encyclopedia of Philosophy,(forthcoming)
Reck, E. & Schiemer, G. (2019b): The Prehistory of Mathematical Structuralism, Oxford University Press, (forthcoming)
Russell, B. (1919): Introduction to Mathematical Philosophy. London: George Allen & Unwin.
Shapiro, S. (1997): Philosophy of Mathematics: Structure and Ontology, Oxford University Press

Zuordnung im Vorlesungsverzeichnis

Letzte Änderung: Mo 29.11.2021 14:08