Universität Wien

180178 KU Mathematical Intuitionism (2019S)

5.00 ECTS (2.00 SWS), SPL 18 - Philosophie
Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 30 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Donnerstag 02.05. 16:45 - 18:15 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
  • Donnerstag 09.05. 16:45 - 18:15 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
  • Donnerstag 16.05. 16:45 - 18:15 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
  • Donnerstag 23.05. 16:45 - 18:15 Hörsaal 3F NIG 3.Stock
  • Donnerstag 23.05. 18:30 - 20:00 Hörsaal 3F NIG 3.Stock
  • Mittwoch 29.05. 16:45 - 18:15 Hörsaal 3B NIG 3.Stock
  • Donnerstag 06.06. 16:45 - 18:15 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
  • Donnerstag 06.06. 18:30 - 20:00 Hörsaal 3F NIG 3.Stock
  • Donnerstag 13.06. 16:45 - 18:15 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien
  • Donnerstag 27.06. 16:45 - 18:15 Hörsaal 3C, NIG Universitätsstraße 7/Stg. II/3. Stock, 1010 Wien

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

The course introduces and analyses the issues of epistemology and philosophy of mathematics that fall under the label intuitionism. Our overview of intuitionism starts with (a) the classic introductions of Shapiro and Pust, who outline the notion of intuition in mathematics and epistemology, respectively. Hence emerges the significance of the notion for the mathematical and the philosophical practice. Statements such as if not-not-p, then p represent a source of evidence for further statements. The former statements are usually called intuitions. In this sense, all logical tautologies, natural deduction, and algebraic axioms are intuitive. Logical justifications and mathematical foundations equally rely on such evidence. The course will first explore the turning point of intuitionism represented by (b) the Kantian account, where mathematical statements are reduced to intuition-based constructions. This part refers to the readings of Hintikka, Parsons, Posy, and Maddy. From the Kantian account, (c) Brouwer seems to derive the intuition of two-oneness, the basal intuition of his mathematics, which creates not only the numbers one and two, but also all finite ordinal numbers. Our analysis of Brouwer’s algebraic intuitionism will include Heyting and Dummett. In relation to Brouwer, we will also consider the (d) perceptual intuitionism of Gödeland Hilbert in the readings of Burgess and Parsons, and (e) Tieszen’s account of Husserl’s phenomenological intuition. Common to all mathematical intuitionists is the idea that a mathematical statement corresponds to a mental construction, and a mathematician can assert the truth of a statement only by verifying the validity of that construction by intuition. The last two parts of our course are devoted to epistemic intuitions. In epistemology, (f) intuitions offer the ultimate evidence or justification for our theories(Chudnoff, Pust). However, lately some scholars such as Cappellan were influenced by (g) deflationist readings of Lewis and Williamson, who reduce intuitions to believes or dispositions to believe. We will finally devote our attention to their arguments.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Mindestanforderungen und Beurteilungsmaßstab

Prüfungsstoff

Literatur

(a) Introduction to Intuitionism (Pust, Shapiro)

(b) Kantian Intuitionism (Hintikka, Kant, Maddy, Parsons, Posy)

(c) Mathematical Intuitionism (Brouwer, Dummett, Heyting, Tieszen, Van Atten)

(d) Gödeland Hilbert on Intuitions and Perceptions(Burgess, Parsons, Tieszen)

(e) Phenomenological Intuition (Tieszen)

(f) Epistemic Intuitions as Evidence or Justification

(g) Deflationist Theories of Intellectual Intuition (Cappellan,Williamson)

Zuordnung im Vorlesungsverzeichnis

Letzte Änderung: Mo 07.09.2020 15:36