Universität Wien FIND

Bedingt durch die COVID-19-Pandemie können kurzfristige Änderungen bei Lehrveranstaltungen und Prüfungen (z.B. Absage von Vor-Ort-Lehre und Umstellung auf Online-Prüfungen) erforderlich sein. Melden Sie sich für Lehrveranstaltungen/Prüfungen über u:space an, informieren Sie sich über den aktuellen Stand auf u:find und auf der Lernplattform moodle.

Weitere Informationen zum Lehrbetrieb vor Ort finden Sie unter https://studieren.univie.ac.at/info.

200005 PS Proseminar zu biologischen Grundlagen des Erlebens und Verhaltens (2020S)

Decision Neuroscience

6.00 ECTS (2.00 SWS), SPL 20 - Psychologie
Prüfungsimmanente Lehrveranstaltung

An/Abmeldung

Details

max. 40 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

This course will be taught in English!

Mittwoch 11.03. 16:45 - 18:15 Hörsaal D Psychologie, NIG 6.Stock A0624
Mittwoch 18.03. 16:45 - 18:15 Hörsaal D Psychologie, NIG 6.Stock A0624
Freitag 27.03. 16:45 - 18:15 Hörsaal C Psychologie, NIG 6.Stock A0618
Mittwoch 01.04. 16:45 - 18:15 Hörsaal D Psychologie, NIG 6.Stock A0624
Mittwoch 22.04. 16:45 - 18:15 Hörsaal D Psychologie, NIG 6.Stock A0624
Mittwoch 29.04. 16:45 - 18:15 Hörsaal D Psychologie, NIG 6.Stock A0624
Mittwoch 06.05. 16:45 - 18:15 Hörsaal D Psychologie, NIG 6.Stock A0624
Mittwoch 13.05. 16:45 - 18:15 Hörsaal D Psychologie, NIG 6.Stock A0624
Mittwoch 20.05. 16:45 - 18:15 Hörsaal D Psychologie, NIG 6.Stock A0624
Mittwoch 27.05. 16:45 - 18:15 Hörsaal D Psychologie, NIG 6.Stock A0624
Mittwoch 03.06. 16:45 - 18:15 Hörsaal D Psychologie, NIG 6.Stock A0624
Mittwoch 10.06. 16:45 - 18:15 Hörsaal D Psychologie, NIG 6.Stock A0624
Mittwoch 17.06. 16:45 - 18:15 Hörsaal D Psychologie, NIG 6.Stock A0624
Mittwoch 24.06. 16:45 - 18:15 Hörsaal D Psychologie, NIG 6.Stock A0624

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

[AIMS]
Decision neuroscience (aka, neuroeconomics) is one of the most interdisciplinary and fast-moving fields, as it combines psychology, economics, and neuroscience to gain insights into how the brain computes value and makes decisions in different contexts.

To this end, it is important to lay the foundation of main concepts and insights of decision neuroscience, so that students are able to deepen their knowledge and understanding in later stages of their studies.

[CONTENT]
This course is dedicated to introducing students to key findings in decision neuroscience as well as common research methods used in decision neuroscience. Throughout the course, we will also cover basic research skills and good scientific practice, e.g., open science.

[METHODS]
Oral presentations by lecturer and students, in-class participation, group presentations.

Art der Leistungskontrolle und erlaubte Hilfsmittel

[Assessment]
Regular participation: 20%
Individual paper presentation: 20%
Group Debate discussion: 15%
Group presentation: 20%
Group paper: 25%

Mindestanforderungen und Beurteilungsmaßstab

[Minimum requirements]
- Comfortable with understanding and presenting scientific content in English
- Basic knowledge about statistics (e.g., t-test, ANOVA, correlation, regression)

[Assessment criteria]
1: >90%
2: 81 - 90%
3: 71 - 80%
4: 61 - 70%
5: <=60%

Prüfungsstoff

- Able to provide a basic understanding of various topics in decision neuroscience
- Able to read journal publication and able to search for literature
- Able to tell the pros and cons of common neuroimaging techniques (EEG, fMRI, TMS, etc.)
- Able to appreciate the necessity of the open science practice
- Able to formulate valid research questions and design simple experiments

Literatur

[Journal articles]
- Ruff, C. C., & Fehr, E. (2014). The neurobiology of rewards and values in social decision making. Nature Reviews Neuroscience, 15(8), 549.
- Rangel, A., Camerer, C., & Montague, P. R. (2008). A framework for studying the neurobiology of value-based decision making. Nature reviews neuroscience, 9(7), 545.

[Books]
- Glimcher, P. W., & Fehr, E. (Eds.). (2013). Neuroeconomics: Decision making and the brain. Academic Press.
- Kahneman, D. (2011). Thinking, fast and slow. Macmillan.

[Extended reading]
- Ahn, W. Y., Haines, N., & Zhang, L. (2017). Revealing neurocomputational mechanisms of reinforcement learning and decision-making with the hBayesDM package. Computational Psychiatry, 1, 24-57.
- Botvinik-Nezer, R., Holzmeister, F., Camerer, C. F., Dreber, A., Huber, J., Johannesson, M., ... & Avesani, P. (2020). Variability in the analysis of a single neuroimaging dataset by many teams. Nature, 1-7.
- Zhang, L., Lengersdorff, L., Mikus, N., Gläscher, J., & Lamm, C. (2020). Using reinforcement learning models in social neuroscience: frameworks, pitfalls and suggestions of best practices. Social cognitive and affective neuroscience, 15(6), 695-707.
- Hu, Y., He, L., Zhang, L., Wölk, T., Dreher, J. C., & Weber, B. (2018). Spreading inequality: neural computations underlying paying-it-forward reciprocity. Social cognitive and affective neuroscience, 13(6), 578-589.
- Zhang, L., & Gläscher, J. (2020). A brain network supporting social influences in human decision-making. Science advances, 6(34), eabb4159.
- Crawley, D., Zhang, L., Jones, E. J., Ahmad, J., Caceres, A. S. J., Oakley, B., ... & den Ouden, H. (2019). Modeling cognitive flexibility in autism spectrum disorder and typical development reveals comparable developmental shifts in learning mechanisms.
- Zhang, L., Redžepović, S., Rose, M., & Gläscher, J. (2018). Zen and the Art of Making a Bayesian Espresso. Neuron, 98(6), 1066-1068.

Zuordnung im Vorlesungsverzeichnis

70231

Letzte Änderung: Mo 19.10.2020 11:29