Universität Wien FIND

Bedingt durch die COVID-19-Pandemie können kurzfristige Änderungen bei Lehrveranstaltungen und Prüfungen (z.B. Absage von Vor-Ort-Lehre und Umstellung auf Online-Prüfungen) erforderlich sein. Melden Sie sich für Lehrveranstaltungen/Prüfungen über u:space an, informieren Sie sich über den aktuellen Stand auf u:find und auf der Lernplattform moodle. ACHTUNG: Lehrveranstaltungen, bei denen zumindest eine Einheit vor Ort stattfindet, werden in u:find momentan mit "vor Ort" gekennzeichnet.

Regelungen zum Lehrbetrieb vor Ort inkl. Eintrittstests finden Sie unter https://studieren.univie.ac.at/info.

200140 SE Vertiefungsseminar: Geist und Gehirn (2020W)

Cognitive Modeling in Python

4.00 ECTS (2.00 SWS), SPL 20 - Psychologie
Prüfungsimmanente Lehrveranstaltung

Vertiefungsseminare können nur fürs Pflichtmodul B verwendet werden! Eine Verwendung fürs Modul A4 Freie Fächer ist nicht möglich.

An/Abmeldung

Details

max. 20 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

The seven theoretical/discussion sessions will take place in person if the Covid situation allows (Dates: 06.10; 20.10; 03.11; 17.11; 01.12; 12.01.2021; 26.01.2021).
The six practical sessions (every second class on 13.10; 27.10; 10.11 ;24.11; 15.12; 19.01.2021) will take place remotely for sure.

Dienstag 06.10. 09:45 - 11:15 Hörsaal D Psychologie, NIG 6.Stock A0624
Dienstag 13.10. 09:45 - 11:15 Hörsaal D Psychologie, NIG 6.Stock A0624
Dienstag 20.10. 09:45 - 11:15 Hörsaal D Psychologie, NIG 6.Stock A0624
Dienstag 27.10. 09:45 - 11:15 Hörsaal D Psychologie, NIG 6.Stock A0624
Dienstag 03.11. 09:45 - 11:15 Hörsaal D Psychologie, NIG 6.Stock A0624
Dienstag 10.11. 09:45 - 11:15 Hörsaal D Psychologie, NIG 6.Stock A0624
Dienstag 17.11. 09:45 - 11:15 Hörsaal D Psychologie, NIG 6.Stock A0624
Dienstag 24.11. 09:45 - 11:15 Hörsaal D Psychologie, NIG 6.Stock A0624
Dienstag 01.12. 09:45 - 11:15 Hörsaal D Psychologie, NIG 6.Stock A0624
Dienstag 15.12. 09:45 - 11:15 Hörsaal D Psychologie, NIG 6.Stock A0624
Dienstag 12.01. 09:45 - 11:15 Hörsaal D Psychologie, NIG 6.Stock A0624
Dienstag 19.01. 09:45 - 11:15 Hörsaal D Psychologie, NIG 6.Stock A0624
Dienstag 26.01. 09:45 - 11:15 Hörsaal D Psychologie, NIG 6.Stock A0624

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

The aim of this course is to introduce students to the main modelling approaches used in Cognitive Psychology and Neuroscience with a focus on decisions-making and visual perception.
The hybrid format will consist of -if possible- in person lectures and remote Python programming tutorials alternating weekly, where a lecture is followed by related tutorial the week after.
Students are expected to prepare with reading a research paper and writing a short reading summary for each lecture. Students will work remotely on the tutorials, but will receive help and feedback during the sessions, with virtual intros/summaries. Experience with Python programming is not required but very helpful.

Art der Leistungskontrolle und erlaubte Hilfsmittel

1. Reading summary for each lecture (30%)
2. Programming tutorials (40%)
3. Final project (coding or essay, 30%)

Mindestanforderungen und Beurteilungsmaßstab

-Detailed requirements will be given in class.
Minimum requirements are class attendance with maximum of two missed sessions (without special arrangement made with the lecturer before a missed class).

Prüfungsstoff

There is no exam, evaluation is based on the tutorials, reading summaries and the final project.

Literatur

Research papers:
L Griffiths, T., Kemp, C., & B Tenenbaum, J. (2008). Bayesian models of cognition.

Blohm, G., Kording, K. P., & Schrater, P. R. (2020). A how-to-model guide for Neuroscience. Eneuro, 7(1).

Richards, B. A., Lillicrap, T. P., Beaudoin, P., Bengio, Y., Bogacz, R., Christensen, A., ... & Gillon, C. J. (2019). A deep learning framework for neuroscience. Nature neuroscience, 22(11), 1761-1770.

Sinz, F. H., Pitkow, X., Reimer, J., Bethge, M., & Tolias, A. S. (2019). Engineering a less artificial intelligence. Neuron, 103(6), 967-979.

Niv, Y., & Langdon, A. (2016). Reinforcement learning with Marr. Current opinion in behavioral sciences, 11, 67-73.

Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: theory and data for two-choice decision tasks. Neural computation, 20(4), 873-922.

Yang, G. R., & Wang, X. J. (2020). Artificial neural networks for neuroscientists: A primer. arXiv preprint arXiv:2006.01001.

Optional textbook:
Frisby, J. P., & Stone, J. V. (2010). Seeing: The computational approach to biological vision. The MIT Press.

Zuordnung im Vorlesungsverzeichnis

Letzte Änderung: Do 24.09.2020 12:09