200226 SE Theorie und Empirie wissenschaftlichen Arbeitens (Geist und Gehirn) 2 (2025S)
Prüfungsimmanente Lehrveranstaltung
Labels
Dieses TEWA 2 kann für alle Schwerpunkte absolviert werden.
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 03.02.2025 09:00 bis Do 27.02.2025 09:00
- Abmeldung bis Mo 03.03.2025 09:00
Details
max. 20 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Dienstag 04.03. 14:00 - 18:00 PCR Computerhörsaal Psychologie, NIG 6.Stock A0607
- Dienstag 11.03. 14:00 - 18:00 PCR Computerhörsaal Psychologie, NIG 6.Stock A0607
- Dienstag 18.03. 14:00 - 18:00 PCR Computerhörsaal Psychologie, NIG 6.Stock A0607
- Dienstag 25.03. 14:00 - 18:00 PCR Computerhörsaal Psychologie, NIG 6.Stock A0607
- Dienstag 01.04. 14:00 - 18:00 PCR Computerhörsaal Psychologie, NIG 6.Stock A0607
- Dienstag 08.04. 14:00 - 18:00 PCR Computerhörsaal Psychologie, NIG 6.Stock A0607
- Dienstag 29.04. 14:00 - 18:00 PCR Computerhörsaal Psychologie, NIG 6.Stock A0607
- Dienstag 06.05. 14:00 - 18:00 PCR Computerhörsaal Psychologie, NIG 6.Stock A0607
- Dienstag 13.05. 14:00 - 18:00 PCR Computerhörsaal Psychologie, NIG 6.Stock A0607
- N Dienstag 20.05. 14:00 - 18:00 PCR Computerhörsaal Psychologie, NIG 6.Stock A0607
- Dienstag 27.05. 14:00 - 18:00 PCR Computerhörsaal Psychologie, NIG 6.Stock A0607
- Dienstag 03.06. 14:00 - 18:00 PCR Computerhörsaal Psychologie, NIG 6.Stock A0607
- Dienstag 10.06. 14:00 - 18:00 PCR Computerhörsaal Psychologie, NIG 6.Stock A0607
- Dienstag 17.06. 14:00 - 18:00 PCR Computerhörsaal Psychologie, NIG 6.Stock A0607
- Dienstag 24.06. 14:00 - 18:00 PCR Computerhörsaal Psychologie, NIG 6.Stock A0607
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
50% Final Project Oral Presentation (Intro and Methods) and Q&A
50% Class homework assignments, including 3 small assignments (3 x 10%) and a final project (20%) (Individual)
50% Class homework assignments, including 3 small assignments (3 x 10%) and a final project (20%) (Individual)
Mindestanforderungen und Beurteilungsmaßstab
>50% is necessary for a positive end result; >50% to 63% : grade 4, >63% to 75% : grade 3, >75% to 88% : grade 2, >88% : grade 1
Prüfungsstoff
All of which was covered in class
Literatur
Harvard python course:
- https://www.youtube.com/watch?v=nLRL_NcnK-4&t=7492s
Computational social science courses:
- https://ayoubbagheri.nl/applied_tm/
- https://github.com/JanaLasser/SICSS-aachen-graz
- http://digitalmedia.andreasjungherr.de/docs/intro.html
- Engel, U., Quan-Haase, A., Liu, S., & Lyberg, L. (Eds.). (2021). Handbook of Computational Social Science, Volume 2: Data Science, Statistical Modelling, and Machine Learning Methods (1st ed.). Routledge. https://doi.org/10.4324/9781003025245
Historical Psychology:
- Martins & Baumard (2022). How to develop reliable instruments to measure the cultural evolution of preferences and feelings in history? Frontiers in Psychology (13) https://osf.io/acukm/
- https://www.youtube.com/watch?v=nLRL_NcnK-4&t=7492s
Computational social science courses:
- https://ayoubbagheri.nl/applied_tm/
- https://github.com/JanaLasser/SICSS-aachen-graz
- http://digitalmedia.andreasjungherr.de/docs/intro.html
- Engel, U., Quan-Haase, A., Liu, S., & Lyberg, L. (Eds.). (2021). Handbook of Computational Social Science, Volume 2: Data Science, Statistical Modelling, and Machine Learning Methods (1st ed.). Routledge. https://doi.org/10.4324/9781003025245
Historical Psychology:
- Martins & Baumard (2022). How to develop reliable instruments to measure the cultural evolution of preferences and feelings in history? Frontiers in Psychology (13) https://osf.io/acukm/
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Di 04.03.2025 11:26
Introduction to Python. Variables, numbers, strings, lists, loops, modules, and functions;
Introduction to modules. NLTK, Matplotlib, Regular Expressions, etc.;
Bag-of-words analyses. Preprocessing. Finding word synonyms and hyponyms using WordNet;
Word Embeddings. Building semantic clouds and navigating meaning spaces using Word2vec;
Pandas and simple visualizations: Creating datasets, word clouds, and frequency plots. Sentiment analysis. Overview and implementation of lexical and machine learning techniques;
Web scraping. Reading HTML/XML files with Beautiful Soup; Website interaction with Selenium;
APIs. Extracting structured information from social media and popular repositories;
Diachronic Analyses. Using psychometric tools to build valid bags-of-words; historical time series;
Designing studies and testing hypotheses. Relationship between historical events, socioeconomics, and word frequencies. Cross-correlations, lag analyses, and linear mixed models.