Universität Wien

210027 UE BAK 4 Quantitative Methoden der empirischen Sozialforschung (2021W)

(engl.)

6.00 ECTS (2.00 SWS), SPL 21 - Politikwissenschaft
Prüfungsimmanente Lehrveranstaltung
GEMISCHT

Eine Anmeldung über u:space innerhalb der Anmeldephase ist erforderlich! Eine nachträgliche Anmeldung ist NICHT möglich.
Studierende, die der ersten Einheit unentschuldigt fernbleiben, verlieren ihren Platz in der Lehrveranstaltung.

Achten Sie auf die Einhaltung der Standards guter wissenschaftlicher Praxis und die korrekte Anwendung der Techniken wissenschaftlichen Arbeitens und Schreibens.
Plagiierte und erschlichene Teilleistungen führen zur Nichtbewertung der Lehrveranstaltung (Eintragung eines 'X' im Sammelzeugnis).
Die Lehrveranstaltungsleitung kann Studierende zu einem notenrelevanten Gespräch über erbrachte Teilleistungen einladen.

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

max. 35 Teilnehmer*innen
Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Instruction in this course is in English and students are expected to submit all their work in English as well. The course uses the free statistical programming language R. Students need to have acess to a laptop that they can use to install their own version of R.

  • Mittwoch 06.10. 11:30 - 13:00 Seminarraum 19, Kolingasse 14-16, OG02
  • Mittwoch 13.10. 11:30 - 13:00 Seminarraum 19, Kolingasse 14-16, OG02
  • Mittwoch 20.10. 11:30 - 13:00 Seminarraum 19, Kolingasse 14-16, OG02
  • Mittwoch 27.10. 11:30 - 13:00 Seminarraum 19, Kolingasse 14-16, OG02
  • Mittwoch 03.11. 11:30 - 13:00 Seminarraum 19, Kolingasse 14-16, OG02
  • Mittwoch 10.11. 11:30 - 13:00 Seminarraum 19, Kolingasse 14-16, OG02
  • Mittwoch 17.11. 11:30 - 13:00 Seminarraum 19, Kolingasse 14-16, OG02
  • Mittwoch 24.11. 11:30 - 13:00 Seminarraum 19, Kolingasse 14-16, OG02
  • Mittwoch 01.12. 11:30 - 13:00 Seminarraum 19, Kolingasse 14-16, OG02
  • Mittwoch 15.12. 11:30 - 13:00 Seminarraum 19, Kolingasse 14-16, OG02
  • Mittwoch 12.01. 11:30 - 13:00 Seminarraum 19, Kolingasse 14-16, OG02
  • Mittwoch 19.01. 11:30 - 13:00 Seminarraum 19, Kolingasse 14-16, OG02
  • Mittwoch 26.01. 11:30 - 13:00 Seminarraum 19, Kolingasse 14-16, OG02

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

This course is complementary to the theoretical course “210014 VO BAK 4 Quantitative methods in the empirical social sciences (2020W)” taught by Professor Markus Wagner. The aim of the course is to equip students with the basic applied skills for easy data projects. The content of the course includes descriptive univariate (scale levels, position and dispersion measures, frequency tables) and bivariate (cross tables, correlation measures for different scale levels) analysis methods, as well as the graphic representation of results and the basics of inferential regression statistics. The core focus of is course will be hands-on and practical. The 210014 VO lecture component will cover more abstract ideas. Students are strongly encouraged to attend the lecture as well.

Students will learn the basic “tools” to conduct quantitative data analysis, using the statistical software R. Theoretical concepts of descriptive and inferential statistics will be briefly discussed in class, in combination with their practical application using existing databases typical of those in the field of political science. By the end of the course, you should be able to describe a dataset and conduct basic inferential analysis using the main commands implemented in R.

At the end of the course, students should know and understand the basic methods and simple statistical procedures in the social sciences, as well as be able to interpret and evaluate the results of quantitative social research in research and the media. You should also be able to develop questions yourself and answer them using quantitative methods and be able to present the results of quantitative research appropriately.

The primary method of the course will be digital/online using Moodle and BigBlueButton. This will allow for the maximum number of students to attend synchronously.

Art der Leistungskontrolle und erlaubte Hilfsmittel

The final assessment will be based on the following components:
(1) Attendance/Participation (10% of final grade) Regular attendance in class (maximum 2 classes can be missed)
(2) 3 short homework assignments (25% of final grade) based on materials in the course texts. Students are encouraged to form study groups but assignments must be completed individually. The Turnitin program will ensure that no plagiarism occurs.
(3) 1 short test (25% of final grade). The test will be conducted in class and will concern theoretical questions and/or interpretation of R output. Duration: max 45 minutes.
(4) Final assignment (40% of final grade). At the end of the course, you will be required to write a final paper of 2000-2500 words, focusing mostly on methods with applications in R. Detailed instructions about the final assignment will be posted on Moodle and circulated in class before the end of the course. Joint work is NOT allowed for the final assignment. Deadline for handing in the final assignment: 31 March 2020.

Final grades will be a summation of these:
100-90 Points Excellent (1)
89-80 Points Good (2)
79-70 Points Satisfactory (3)
69-60 Points Sufficient (4)
59-0 Points Insufficient (5)

Mindestanforderungen und Beurteilungsmaßstab

Please note that all four components are essential for the final grade, i.e. you have to be present in class, hand in 3 homework assignments, complete the short test, and hand in the final assignment. In cases of suspected plagiarism, you may be called upon to reasonably demonstrate that any work they you have submitted is your own. A passing grade on each component is not required for a passing grade in the course.

Prüfungsstoff

The examination will focus on different statistical concepts covered in class and will include basic data analysis using the programming language R. Detailed instructions about the homework assignments and the final assignment will be posted on Moodle in due time.

Literatur

The following readings are required:
- Garrett Grolemund and Hadley Wickham. R for Data Science. https://r4ds.had.co.nz/
- James Long and Paul Teetor. R cookbook (2nd edition) https://rc2e.com/

Suggested optional readings:
- Alan Agresti (2018). Statistical methods for the social sciences (5th edition). New Jersey: Pearson Education International
- Kosuke Imai, Quantitative Social Science: An Introduction, Princeton University Press, 2018.
- Paul M. Kellstedt, and Guy D. Whitten. 2018 (3rd edition). The fundamentals of political science research. Cambridge: Cambridge University Press

Zuordnung im Vorlesungsverzeichnis

Letzte Änderung: Mo 18.10.2021 14:08