Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.
210097 UE M2: Politikwissenschaftliche Methoden quantitativ (2025S)
Prüfungsimmanente Lehrveranstaltung
Labels
Details
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- N Mittwoch 05.03. 08:00 - 09:30 Class Room 2 ZID UniCampus Hof 7 Eingang 7.1, 1.OG ( 2H-O1-13)
- Mittwoch 05.03. 09:45 - 11:15 Class Room 2 ZID UniCampus Hof 7 Eingang 7.1, 1.OG ( 2H-O1-13)
- Mittwoch 19.03. 08:00 - 09:30 Class Room 2 ZID UniCampus Hof 7 Eingang 7.1, 1.OG ( 2H-O1-13)
- Mittwoch 19.03. 09:45 - 11:15 Class Room 2 ZID UniCampus Hof 7 Eingang 7.1, 1.OG ( 2H-O1-13)
- Mittwoch 26.03. 08:00 - 09:30 Class Room 2 ZID UniCampus Hof 7 Eingang 7.1, 1.OG ( 2H-O1-13)
- Mittwoch 26.03. 09:45 - 11:15 Class Room 2 ZID UniCampus Hof 7 Eingang 7.1, 1.OG ( 2H-O1-13)
- Mittwoch 02.04. 08:00 - 09:30 Class Room 2 ZID UniCampus Hof 7 Eingang 7.1, 1.OG ( 2H-O1-13)
- Mittwoch 02.04. 09:45 - 11:15 Class Room 2 ZID UniCampus Hof 7 Eingang 7.1, 1.OG ( 2H-O1-13)
- Mittwoch 09.04. 08:00 - 09:30 Class Room 2 ZID UniCampus Hof 7 Eingang 7.1, 1.OG ( 2H-O1-13)
- Mittwoch 09.04. 09:45 - 11:15 Class Room 2 ZID UniCampus Hof 7 Eingang 7.1, 1.OG ( 2H-O1-13)
- Mittwoch 30.04. 08:00 - 09:30 Class Room 2 ZID UniCampus Hof 7 Eingang 7.1, 1.OG ( 2H-O1-13)
- Mittwoch 30.04. 09:45 - 11:15 Class Room 2 ZID UniCampus Hof 7 Eingang 7.1, 1.OG ( 2H-O1-13)
- Mittwoch 07.05. 08:00 - 09:30 Class Room 2 ZID UniCampus Hof 7 Eingang 7.1, 1.OG ( 2H-O1-13)
- Mittwoch 07.05. 09:45 - 11:15 Class Room 2 ZID UniCampus Hof 7 Eingang 7.1, 1.OG ( 2H-O1-13)
- Mittwoch 14.05. 08:00 - 09:30 Class Room 2 ZID UniCampus Hof 7 Eingang 7.1, 1.OG ( 2H-O1-13)
- Mittwoch 14.05. 09:45 - 11:15 Class Room 2 ZID UniCampus Hof 7 Eingang 7.1, 1.OG ( 2H-O1-13)
- Mittwoch 21.05. 08:00 - 09:30 Class Room 2 ZID UniCampus Hof 7 Eingang 7.1, 1.OG ( 2H-O1-13)
- Mittwoch 21.05. 09:45 - 11:15 Class Room 2 ZID UniCampus Hof 7 Eingang 7.1, 1.OG ( 2H-O1-13)
- Mittwoch 28.05. 08:00 - 09:30 Class Room 2 ZID UniCampus Hof 7 Eingang 7.1, 1.OG ( 2H-O1-13)
- Mittwoch 28.05. 09:45 - 11:15 Class Room 2 ZID UniCampus Hof 7 Eingang 7.1, 1.OG ( 2H-O1-13)
- Mittwoch 04.06. 08:00 - 09:30 Class Room 2 ZID UniCampus Hof 7 Eingang 7.1, 1.OG ( 2H-O1-13)
- Mittwoch 04.06. 09:45 - 11:15 Class Room 2 ZID UniCampus Hof 7 Eingang 7.1, 1.OG ( 2H-O1-13)
- Mittwoch 11.06. 08:00 - 09:30 Class Room 2 ZID UniCampus Hof 7 Eingang 7.1, 1.OG ( 2H-O1-13)
- Mittwoch 11.06. 09:45 - 11:15 Class Room 2 ZID UniCampus Hof 7 Eingang 7.1, 1.OG ( 2H-O1-13)
- Mittwoch 18.06. 08:00 - 09:30 Class Room 2 ZID UniCampus Hof 7 Eingang 7.1, 1.OG ( 2H-O1-13)
- Mittwoch 18.06. 09:45 - 11:15 Class Room 2 ZID UniCampus Hof 7 Eingang 7.1, 1.OG ( 2H-O1-13)
- Mittwoch 25.06. 08:00 - 09:30 Class Room 2 ZID UniCampus Hof 7 Eingang 7.1, 1.OG ( 2H-O1-13)
- Mittwoch 25.06. 09:45 - 11:15 Class Room 2 ZID UniCampus Hof 7 Eingang 7.1, 1.OG ( 2H-O1-13)
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
The final grade is made up of:
- research proposal (10%)
- practical R exercises (25%),
- research outline + presentation (15%),
- final paper (40%),
- active class participation (10%)
- research proposal (10%)
- practical R exercises (25%),
- research outline + presentation (15%),
- final paper (40%),
- active class participation (10%)
Mindestanforderungen und Beurteilungsmaßstab
Attendance policy:
Only 2 absences are allowed (2 double-sessions/days).Requirements:
Students can only pass this course if students submit the homework on time, miss only two double-sessions (maximum), and submit the research outline, and final paper on time.
The software Turnitin will be used to check plagiarism.Grading Scale:
87-100 points: Very good (1)
75-86 points: Good (2)
63-74 points: Satisfactory (3)
50-62 points: Sufficient (4)
0-49 points: Not sufficient (5)
Only 2 absences are allowed (2 double-sessions/days).Requirements:
Students can only pass this course if students submit the homework on time, miss only two double-sessions (maximum), and submit the research outline, and final paper on time.
The software Turnitin will be used to check plagiarism.Grading Scale:
87-100 points: Very good (1)
75-86 points: Good (2)
63-74 points: Satisfactory (3)
50-62 points: Sufficient (4)
0-49 points: Not sufficient (5)
Prüfungsstoff
Students will be assessed based on their ability to formulate a research question, and develop a research design as well as on their knowledge of key quantitative skills.
Literatur
- Kellstedt, P. M. and Whitten, G. D. (2013) The Fundamentals of Political Science Research, Cambridge University Press.
- Agresti A. (2018) Statistical methods for the Social Sciences, 5th Edition.More will be communicated in class.
- Agresti A. (2018) Statistical methods for the Social Sciences, 5th Edition.More will be communicated in class.
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Mi 15.01.2025 12:46
Katharina Pfaff + Christina GahnCONTENT
The course deals with the development of a research design. For this purpose all key concepts and steps of a solid research design are discussed: formulation of a research question, literature review, theory, hypothesis definition and testing, concept definitions and operationalization, case selection, and empirical verification.
Some of the questions discussed include the following: How do you develop and formulate a good research question? What is a suitable sampling strategy or estimation approach for a given research question? How do we deal with validity concerns and decrease uncertainty in empirical estimations? Against this backdrop, the seminar also discusses statistical methods that are useful for answering the research question and testing hypotheses. The empirical analyses are carried out using the programme R.LEARNING OUTCOMES
Students, who have read the material and both regularly and successfully participated in class, will be able to:
- develop good research questions and an appropriate research design for a research paper (e.g. MA thesis);
- design and conduct research studies which require the collection and analysis of quantitative data;
- analyse quantitative data and interpret empirical results using R;
- draw appropriate conclusions based on statistical results;
- improve their scientific writing skills;
- critically evaluate scientific evidence that is communicated in academic journals, the popular press, and other outlets such as reports from government agencies, non-profit organizations, and corporations.