220050 SE SE Advanced Data Analysis 2 (2018S)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 19.02.2018 09:00 bis Mi 21.02.2018 18:00
- Abmeldung bis Sa 31.03.2018 23:59
Details
max. 30 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Montag 19.03. 11:00 - 12:30 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Montag 09.04. 11:00 - 12:30 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Montag 16.04. 11:00 - 12:30 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Montag 23.04. 11:00 - 12:30 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Montag 30.04. 11:00 - 12:30 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Montag 07.05. 11:00 - 12:30 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Montag 14.05. 11:00 - 12:30 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Montag 28.05. 11:00 - 12:30 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Montag 04.06. 11:00 - 12:30 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Montag 11.06. 11:00 - 12:30 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Montag 18.06. 11:00 - 12:30 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Montag 25.06. 11:00 - 12:30 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
There are two take-home exams that will be distributed at some points during the semester. The two assignments deal with critically demonstrating your understandings of key concepts in linear modeling fundamentals and its extensions. This constitutes a total of 30% of the final grade.The rest of your grade (70%) will be based on a final data analysis project that you complete using either your own data or data available to you through an advisor or through a public archive (I do not place any restrictions on the scope of possible data you could use).
Mindestanforderungen und Beurteilungsmaßstab
Your grade will be calculated based on largely a percentage based system where 90%+ = A (=1), 80% - 90%+ = B (=2), 70% - 80%+ = C (=3), 60% - 70%+ = D (=4), less than 60% = E (=5).
I reserve the right to modify this system downward depending on the distribution of grades. In other words, if only one student exceeds the 90% threshold, but five hit 89%, I may choose to move the cutoff for an A to 89%.For successfully passing the course, participants have to achieve at least 51% of the total points. Full details on the course grading (e.g., grading system) will be given in the first session. Ongoing in-class participation is required.
I reserve the right to modify this system downward depending on the distribution of grades. In other words, if only one student exceeds the 90% threshold, but five hit 89%, I may choose to move the cutoff for an A to 89%.For successfully passing the course, participants have to achieve at least 51% of the total points. Full details on the course grading (e.g., grading system) will be given in the first session. Ongoing in-class participation is required.
Prüfungsstoff
Required knowledge and practical skills will be conveyed in the workshop sessions and tutorials. In addition, participants are expected to read widely on the subject. Here, participants are required to consult the required basic reading and the additional literature in order to successfully complete the assignments.
Literatur
Hayes, A. F. (2017). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach (2nd edition). New York: Guilford Press.Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect
effects in simple mediation models. Behavior Research Methods, Instruments, and
Computers, 36, 717-731.Hayes, A. F., & Matthes, J. (2009). Computational procedures for probing interactions in OLS and logistic regression: SPSS and SAS implementations. Behavior Research Methods, 41, 924-936.Hayes, A. F., Glynn, C. J., & Huge, M. E. (2012). Cautions in the interpretation of coefficients and hypothesis tests in linear models with interactions. Communication
Methods, and Measures, 6, 1-12.Preacher, K. J., Rucker, D. D., & Hayes, A. F. (2007). Assessing moderated mediation hypotheses: Theory, methods, and prescriptions. Multivariate Behavioral Research, 42, 185-227.
effects in simple mediation models. Behavior Research Methods, Instruments, and
Computers, 36, 717-731.Hayes, A. F., & Matthes, J. (2009). Computational procedures for probing interactions in OLS and logistic regression: SPSS and SAS implementations. Behavior Research Methods, 41, 924-936.Hayes, A. F., Glynn, C. J., & Huge, M. E. (2012). Cautions in the interpretation of coefficients and hypothesis tests in linear models with interactions. Communication
Methods, and Measures, 6, 1-12.Preacher, K. J., Rucker, D. D., & Hayes, A. F. (2007). Assessing moderated mediation hypotheses: Theory, methods, and prescriptions. Multivariate Behavioral Research, 42, 185-227.
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Do 14.11.2024 00:15
- interpret the results of basic moderation and mediation models within regression framework
- know how test competing theories of mechanisms statistically through the comparison of indirect effects in models with multiple mediators,
- have the ability to visualize and probe interactions in regression models in order to interpret interaction effects in the appropriate ways,
- have learned how to estimate the contingencies of mechanisms through the computation and inference about conditional indirect effects,
- and use SPSS PROCESS Macro and/or R language to run and understand moderation, mediation, and conditional process models.