230088 UE Vertiefende quantitative Methoden: Datenanalyse mit R (2020S)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Mo 03.02.2020 10:00 bis Fr 21.02.2020 10:00
- Abmeldung bis Do 30.04.2020 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Deutsch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Samstag 07.03. 09:45 - 13:45 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Samstag 14.03. 09:45 - 13:45 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Samstag 04.04. 09:45 - 13:45 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Samstag 25.04. 09:45 - 13:45 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Samstag 16.05. 09:45 - 13:45 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Samstag 06.06. 09:45 - 13:45 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Die Leistungskontrolle setzt sich aus vier Hausübungen (praktische Übungen am PC, die pünktlich zu vorher festgelegten Terminen abgegeben werden müssen) zusammen (je Hausübung 25% der Endnote).Hinweis der SPL:
Die Erbringung aller Teilleistungen ist Voraussetzung für eine positive Beurteilung, wenn nicht explizit etwas anderes vermerkt wurde.
Werden einzelne verpflichtende Teilleistungen nicht erbracht, gilt die Lehrveranstaltung als abgebrochen. Falls dem Nichterbringen der Leistung kein wichtiger und unvorhersehbarer Grund seitens des/der Studierenden vorliegt, wird die LV negativ beurteilt.
Bei Vorliegen eines solchen Grundes (zB eine längere Erkrankung) kann der/die Studierende auch nach Ablauf der Frist von der LV abgemeldet werden. Über das Vorliegen eines wichtigen Grundes entscheidet die Lehrveranstaltungsleitung. Der Antrag auf Abmeldung ist unverzüglich nach Eintreten des Grundes zu stellen.
Wurde eine Teilleistung erschlichen, d.h. etwa bei einer Prüfung oder einem Test geschummelt, bei einer schriftlichen Arbeit plagiiert oder auch Unterschriften auf Anwesenheitslisten gefälscht, wird die gesamte Lehrveranstaltung als "nicht beurteilt" gewertet und mit dem Vermerk "geschummelt/erschlichen" in das Notenerfassungssystem eingetragen.
Im Zuge der Beurteilung kann eine Plagiatssoftware (Turnitin in Moodle) zur Anwendung kommen: Details werden von den Lehrenden in der Lehrveranstaltung bekanntgeben.
Die Erbringung aller Teilleistungen ist Voraussetzung für eine positive Beurteilung, wenn nicht explizit etwas anderes vermerkt wurde.
Werden einzelne verpflichtende Teilleistungen nicht erbracht, gilt die Lehrveranstaltung als abgebrochen. Falls dem Nichterbringen der Leistung kein wichtiger und unvorhersehbarer Grund seitens des/der Studierenden vorliegt, wird die LV negativ beurteilt.
Bei Vorliegen eines solchen Grundes (zB eine längere Erkrankung) kann der/die Studierende auch nach Ablauf der Frist von der LV abgemeldet werden. Über das Vorliegen eines wichtigen Grundes entscheidet die Lehrveranstaltungsleitung. Der Antrag auf Abmeldung ist unverzüglich nach Eintreten des Grundes zu stellen.
Wurde eine Teilleistung erschlichen, d.h. etwa bei einer Prüfung oder einem Test geschummelt, bei einer schriftlichen Arbeit plagiiert oder auch Unterschriften auf Anwesenheitslisten gefälscht, wird die gesamte Lehrveranstaltung als "nicht beurteilt" gewertet und mit dem Vermerk "geschummelt/erschlichen" in das Notenerfassungssystem eingetragen.
Im Zuge der Beurteilung kann eine Plagiatssoftware (Turnitin in Moodle) zur Anwendung kommen: Details werden von den Lehrenden in der Lehrveranstaltung bekanntgeben.
Mindestanforderungen und Beurteilungsmaßstab
(1) Regelmäßige und aktive Teilnahme (bei 6 Einheiten/Blöcken maximal eine unentschuldigte Fehleinheit).
(2) Die Note ergibt sich aus den Teilleistungen, d.h. aus den vier Hausübungen, wobei jede Teilleistung/Hausübung zu 25% in die Endnote einfließt.
(2) Die Note ergibt sich aus den Teilleistungen, d.h. aus den vier Hausübungen, wobei jede Teilleistung/Hausübung zu 25% in die Endnote einfließt.
Prüfungsstoff
Literatur
Chang, Winston (2013): R Graphics Cookbook. O'Reilly.
Luhmann, M. (2013) R für Einsteiger. Einführung in die Statistiksoftware für die Sozialwissenschaften. Weinheim/Basel: Beltz Verlag.
Manderscheid, Katharina (2017): Sozialwissenschaftliche Datenanalyse mit R. Eine Einführung. Springer VS.
Luhmann, M. (2013) R für Einsteiger. Einführung in die Statistiksoftware für die Sozialwissenschaften. Weinheim/Basel: Beltz Verlag.
Manderscheid, Katharina (2017): Sozialwissenschaftliche Datenanalyse mit R. Eine Einführung. Springer VS.
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Do 14.11.2024 00:16
Ziel ist es, die Teilnehmer*innen anhand praktischer Beispiele dazu zu befähigen, eigenständig Forschungsfragen mit R zu beantworten.
Themenvorschläge der Teilnehmer*innen sind jederzeit willkommen und können in die Veranstaltung integriert werden. Statistische Grundkenntnisse werden vorausgesetzt.