230150 UE EC: Moderation and Mediation analysis (2017S)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Do 02.02.2017 10:00 bis Mi 22.02.2017 10:00
- Anmeldung von Sa 25.02.2017 10:00 bis Mo 27.02.2017 10:00
- Abmeldung bis Mo 20.03.2017 23:59
Details
max. 40 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Donnerstag 27.04. 09:15 - 12:15 PC-Raum 1 Schenkenstraße 8-10, 1.UG
- Donnerstag 04.05. 09:15 - 12:15 PC-Raum 1 Schenkenstraße 8-10, 1.UG
- Donnerstag 11.05. 09:15 - 12:15 PC-Raum 1 Schenkenstraße 8-10, 1.UG
- Donnerstag 18.05. 09:15 - 12:15 PC-Raum 1 Schenkenstraße 8-10, 1.UG
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Mindestanforderungen und Beurteilungsmaßstab
Prüfungsstoff
Literatur
Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York: Guilford Press.Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect
effects in simple mediation models. Behavior Research Methods, Instruments, and
Computers, 36, 717-731.Hayes, A. F., & Matthes, J. (2009). Computational procedures for probing interactions in OLS and logistic regression: SPSS and SAS implementations. Behavior Research Methods, 41, 924-936.Hayes, A. F., Glynn, C. J., & Huge, M. E. (2012). Cautions in the interpretation of coefficients and hypothesis tests in linear models with interactions. Communication
Methods, and Measures, 6, 1-12.Preacher, K. J., Rucker, D. D., & Hayes, A. F. (2007). Assessing moderated mediation hypotheses: Theory, methods, and prescriptions. Multivariate Behavioral Research, 42, 185-227.
effects in simple mediation models. Behavior Research Methods, Instruments, and
Computers, 36, 717-731.Hayes, A. F., & Matthes, J. (2009). Computational procedures for probing interactions in OLS and logistic regression: SPSS and SAS implementations. Behavior Research Methods, 41, 924-936.Hayes, A. F., Glynn, C. J., & Huge, M. E. (2012). Cautions in the interpretation of coefficients and hypothesis tests in linear models with interactions. Communication
Methods, and Measures, 6, 1-12.Preacher, K. J., Rucker, D. D., & Hayes, A. F. (2007). Assessing moderated mediation hypotheses: Theory, methods, and prescriptions. Multivariate Behavioral Research, 42, 185-227.
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Mo 07.09.2020 15:39
- interpret the results of basic moderation and mediation models within regression framework
- know how test competing theories of mechanisms statistically through the comparison of indirect effects in models with multiple mediators,
- have the ability to visualize and probe interactions in regression models in order to interpret interaction effects in the appropriate ways,
- have learned how to estimate the contingencies of mechanisms through the computation and inference about conditional indirect effects,
- and use SPSS PROCESS Macro to run and understand moderation, mediation, and conditional process models.