234004 UE Tutorial to Applied Methods of Demographic Analysis (2024S)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Do 01.02.2024 09:00 bis Di 20.02.2024 09:00
- Abmeldung bis Fr 15.03.2024 09:00
Details
max. 30 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Montag 11.03. 15:00 - 18:15 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Montag 18.03. 15:00 - 18:15 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Montag 08.04. 15:00 - 18:15 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Montag 22.04. 09:45 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Montag 29.04. 09:45 - 13:00 PC-Seminarraum 1, Kolingasse 14-16, OG01
- Donnerstag 02.05. 15:00 - 18:00 Seminarraum 19, Kolingasse 14-16, OG02
- Dienstag 18.06. 13:15 - 16:30 Hörsaal 8 Oskar-Morgenstern-Platz 1 1.Stock
- Dienstag 25.06. 13:15 - 16:30 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Students are asked to actively participate in class. Each week students will be asked to complete a small coding exercise, to be submitted before the next class. The homework will be discussed in the following class and randomly selected students will be asked to present their solutions. In addition, there will be a larger final assignment at the end of the tutorial.Assessment criteria:
- Homework (30%)
- Final assignment (45%)
- Class participation (25%)
- Homework (30%)
- Final assignment (45%)
- Class participation (25%)
Mindestanforderungen und Beurteilungsmaßstab
For a successful completion of the course, all performance components must be delivered on time and passed individually (at least 60% per performance component). The final grade will be determined as follows:100%-91%: Excellent (1)
90%-81%: Good (2)
80%-71%: Satisfactory (3)
70%-60%: Sufficient (4)
< 60%: Unsatisfactory (5)Attendance is compulsory; one absence will be excused if the lecturer is informed beforehand.
90%-81%: Good (2)
80%-71%: Satisfactory (3)
70%-60%: Sufficient (4)
< 60%: Unsatisfactory (5)Attendance is compulsory; one absence will be excused if the lecturer is informed beforehand.
Prüfungsstoff
Literatur
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Mi 31.07.2024 12:06
The course does not require pre-existing knowledge of R. A basic introduction to the software will be given at the beginning of the course.
After passing this course, students should be able to conduct simple demographic analyses using adequate data in R.