240054 SE BM8 Datenanalyse (2024S)
Prüfungsimmanente Lehrveranstaltung
Labels
Anwesenheitspflicht in der ersten Einheit!Die Lehrveranstaltungsleitung kann Studierende zu einem notenrelevanten Gespräch über erbrachte Teilleistungen einladen.
Plagiierte oder erschlichene Teilleistungen führen zur Nichtbewertung der Lehrveranstaltung (Eintragung eines 'X' im Sammelzeugnis). Es kommt die Plagiatssoftware Turnitin zum Einsatz.Die Verwendung von KI-Tools (z. B. ChatGPT) zur Erbringung von Teilleistungen ist nur dann erlaubt, wenn dies von der Lehrveranstaltungsleitung ausdrücklich gefordert wird.
Plagiierte oder erschlichene Teilleistungen führen zur Nichtbewertung der Lehrveranstaltung (Eintragung eines 'X' im Sammelzeugnis). Es kommt die Plagiatssoftware Turnitin zum Einsatz.Die Verwendung von KI-Tools (z. B. ChatGPT) zur Erbringung von Teilleistungen ist nur dann erlaubt, wenn dies von der Lehrveranstaltungsleitung ausdrücklich gefordert wird.
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Do 01.02.2024 00:01 bis Mo 26.02.2024 23:59
- Anmeldung von Mi 28.02.2024 00:01 bis Do 29.02.2024 23:59
- Abmeldung bis Mo 18.03.2024 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Deutsch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Dienstag 19.03. 09:45 - 13:00 Seminarraum D, NIG 4. Stock
- Dienstag 16.04. 09:45 - 13:00 Seminarraum D, NIG 4. Stock
- Dienstag 30.04. 09:45 - 13:00 Seminarraum D, NIG 4. Stock
- Dienstag 14.05. 09:45 - 13:00 Seminarraum D, NIG 4. Stock
- Dienstag 04.06. 09:45 - 13:00 Seminarraum D, NIG 4. Stock
- Mittwoch 19.06. 13:15 - 14:45 Seminarraum A, NIG 4. Stock
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
- Regelmäßige Anwesenheit und Mitarbeit im Seminar
- Fristgerechte Abgabe der Arbeitsaufgaben während des Semesters
- Erstellung einer schriftlichen AbschlussarbeitZusätzliche Hinweise
Die Lehrveranstaltungsleitung kann Studierende zu einem notenrelevanten Gespräch über erbrachte Teilleistungen einladen. Plagiierte oder erschlichene Teilleistungen führen zur Nichtbewertung der Lehrveranstaltung (Eintragung eines 'X' im Sammelzeugnis). Es kommt die Plagiatssoftware (‘Turnitin') zum Einsatz. Die Verwendung von KI-Tools (z. B. ChatGPT) zur Erbringung von Teilleistungen ist nur dann erlaubt, wenn dies von der Lehrveranstaltungsleitung ausdrücklich gefordert wird.
- Fristgerechte Abgabe der Arbeitsaufgaben während des Semesters
- Erstellung einer schriftlichen AbschlussarbeitZusätzliche Hinweise
Die Lehrveranstaltungsleitung kann Studierende zu einem notenrelevanten Gespräch über erbrachte Teilleistungen einladen. Plagiierte oder erschlichene Teilleistungen führen zur Nichtbewertung der Lehrveranstaltung (Eintragung eines 'X' im Sammelzeugnis). Es kommt die Plagiatssoftware (‘Turnitin') zum Einsatz. Die Verwendung von KI-Tools (z. B. ChatGPT) zur Erbringung von Teilleistungen ist nur dann erlaubt, wenn dies von der Lehrveranstaltungsleitung ausdrücklich gefordert wird.
Mindestanforderungen und Beurteilungsmaßstab
Folgende Leistungen sind zu erbringen:
+ Anwesenheit und Mitarbeit (Feedback für Kolleg:innen, Reflexionsbereitschaft, etc.) (max. 10 Punkte)
+ Kontinuierliche Erfüllung der geforderten Aufgaben während des Semesters (max. 30 Punkte)
+ Erstellung einer schriftlichen Abschlussarbeit laut Vorgaben (max. 60 Punkte)Es wird nochmals explizit darauf hingewiesen, dass für eine positive Beurteilung alle Teilleistungen erbracht werden müssen.
Benotungsspiegel:
91 - 100 Punkte = 1 (sehr gut)
81 - 90 Punkte = 2 (gut)
71 - 80 Punkte = 3 (befriedigend)
61 - 70 Punkte = 4 (genügend)
0 - 60 Punkte = 5 (nicht genügend)
+ Anwesenheit und Mitarbeit (Feedback für Kolleg:innen, Reflexionsbereitschaft, etc.) (max. 10 Punkte)
+ Kontinuierliche Erfüllung der geforderten Aufgaben während des Semesters (max. 30 Punkte)
+ Erstellung einer schriftlichen Abschlussarbeit laut Vorgaben (max. 60 Punkte)Es wird nochmals explizit darauf hingewiesen, dass für eine positive Beurteilung alle Teilleistungen erbracht werden müssen.
Benotungsspiegel:
91 - 100 Punkte = 1 (sehr gut)
81 - 90 Punkte = 2 (gut)
71 - 80 Punkte = 3 (befriedigend)
61 - 70 Punkte = 4 (genügend)
0 - 60 Punkte = 5 (nicht genügend)
Prüfungsstoff
Prüfungsimmanente Lehrveranstaltung.
Literatur
Bohnsack, Ralf (2011) Qualitative Bild- und Videointerpretation: die dokumentarische Methode. 2., durchgesehene und aktualisierte Auflage. Stuttgart: UTB GmbH.
Kuckartz, Udo, (2010) Einführung in die computergestützte Analyse qualitativer Daten. 3., aktualisierte Aufl. Wiesbaden : VS Verl. für Sozialwiss.
McCormack, Coralie (2000) From Interview Transcript to Interpretive Story: Part 1 - Viewing the Transcript through Multiple Lenses. In: Field methods, Vol.12 (4), p.282-297.
McCormack, Coralie (2000) From Interview Transcript to Interpretive Story: Part 2 - Developing an Interpretive Story. In: Field methods, Vol.12 (4), p.298-315.
Moritz, Christine und Michael Corsten [Hg.] (2018) Handbuch Qualitative Videoanalyse. Wiesbaden: Springer VS.
Rädiker, Stefan und Udo Kuckartz (2019) Analyse qualitativer Daten mit MAXQDA: Text, Audio und Video. Wiesbaden: Springer VS.
Zepke, Georg (2016) Lust auf qualitative Forschung! : eine Einführung für die Praxis. Wien: tso, Texte zur Systemischen Organisationsforschung.
Kuckartz, Udo, (2010) Einführung in die computergestützte Analyse qualitativer Daten. 3., aktualisierte Aufl. Wiesbaden : VS Verl. für Sozialwiss.
McCormack, Coralie (2000) From Interview Transcript to Interpretive Story: Part 1 - Viewing the Transcript through Multiple Lenses. In: Field methods, Vol.12 (4), p.282-297.
McCormack, Coralie (2000) From Interview Transcript to Interpretive Story: Part 2 - Developing an Interpretive Story. In: Field methods, Vol.12 (4), p.298-315.
Moritz, Christine und Michael Corsten [Hg.] (2018) Handbuch Qualitative Videoanalyse. Wiesbaden: Springer VS.
Rädiker, Stefan und Udo Kuckartz (2019) Analyse qualitativer Daten mit MAXQDA: Text, Audio und Video. Wiesbaden: Springer VS.
Zepke, Georg (2016) Lust auf qualitative Forschung! : eine Einführung für die Praxis. Wien: tso, Texte zur Systemischen Organisationsforschung.
Zuordnung im Vorlesungsverzeichnis
Letzte Änderung: Di 14.05.2024 11:06
Grundlegendes zum Prozess der Datenauswertung
Basisschritte im Umgang mit Interviewdaten
Softwaregestützte Datenauswertung
Analyse von visuellem Material
Von der Datenauswertung zur TextproduktionDas Seminar baut auf eigenen Datenerhebungen (z.B. im Rahmen des Feldpraktikums) auf!Methoden:
Der Schwerpunkt der Lehrveranstaltung liegt auf dem selbständigen Erproben von Auswertungsmethoden und ist daher stark auf Interaktion und Partizipation der Studierenden ausgerichtet. Die LV-Einheiten bestehen aus dem Input der LV-Leitung, vertiefenden Diskussionen der Pflichtliteratur und der selbständig erarbeiteten Aufgaben sowie interaktiven Übungen. Mittels kontinuierlicher Diskussionen und Feedbackschleifen durch die Lehrveranstaltungsleitung sowie die Studierenden untereinander werden die Inhalte und die eigenen Erfahrungen in den Präsenzeinheiten eingehend diskutiert und reflektiert.