250002 VO Ausgewählte Kapitel aus Differentialgleichungen (2008W)
Labels
Details
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Mittwoch 01.10. 09:00 - 10:00 Seminarraum
- Donnerstag 02.10. 09:00 - 10:00 Seminarraum
- Mittwoch 08.10. 09:00 - 10:00 Seminarraum
- Donnerstag 09.10. 09:00 - 10:00 Seminarraum
- Mittwoch 15.10. 09:00 - 10:00 Seminarraum
- Donnerstag 16.10. 09:00 - 10:00 Seminarraum
- Mittwoch 22.10. 09:00 - 10:00 Seminarraum
- Donnerstag 23.10. 09:00 - 10:00 Seminarraum
- Mittwoch 29.10. 09:00 - 10:00 Seminarraum
- Donnerstag 30.10. 09:00 - 10:00 Seminarraum
- Mittwoch 05.11. 09:00 - 10:00 Seminarraum
- Donnerstag 06.11. 09:00 - 10:00 Seminarraum
- Mittwoch 12.11. 09:00 - 10:00 Seminarraum
- Donnerstag 13.11. 09:00 - 10:00 Seminarraum
- Mittwoch 19.11. 09:00 - 10:00 Seminarraum
- Donnerstag 20.11. 09:00 - 10:00 Seminarraum
- Mittwoch 26.11. 09:00 - 10:00 Seminarraum
- Donnerstag 27.11. 09:00 - 10:00 Seminarraum
- Mittwoch 03.12. 09:00 - 10:00 Seminarraum
- Donnerstag 04.12. 09:00 - 10:00 Seminarraum
- Mittwoch 10.12. 09:00 - 10:00 Seminarraum
- Donnerstag 11.12. 09:00 - 10:00 Seminarraum
- Mittwoch 17.12. 09:00 - 10:00 Seminarraum
- Donnerstag 18.12. 09:00 - 10:00 Seminarraum
- Mittwoch 07.01. 09:00 - 10:00 Seminarraum
- Donnerstag 08.01. 09:00 - 10:00 Seminarraum
- Mittwoch 14.01. 09:00 - 10:00 Seminarraum
- Donnerstag 15.01. 09:00 - 10:00 Seminarraum
- Mittwoch 21.01. 09:00 - 10:00 Seminarraum
- Donnerstag 22.01. 09:00 - 10:00 Seminarraum
- Mittwoch 28.01. 09:00 - 10:00 Seminarraum
- Donnerstag 29.01. 09:00 - 10:00 Seminarraum
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
fundamental concepts (density, pressure, velocity field, free surface, vorticity), governing equations of hydrodynamics (Eulerian and Lagrangian view), small amplitude water wave theory (linear and nonlinear aspects), special topics (wave breaking, motion beneath the surface, vorticity effects, solitons, tsunamis)
Art der Leistungskontrolle und erlaubte Hilfsmittel
Evaluation of five homework assignments (25 %), midterm take-
home exam (25%), final take-home exam (50 %).
home exam (25%), final take-home exam (50 %).
Mindestanforderungen und Beurteilungsmaßstab
Introduction to the fundamental understanding of water wave theory, aimed at striking a good balance between physical insight and mathematical analysis. The covered aspects range from the classical theory (nondimensionalisation, linearisation) to modern aspects (solitons, tsunamis).
Prüfungsstoff
Course + proseminar + research seminar. The proseminar comple-
ments the course material and provides feedback for the homework assignments. An optional research seminar (with no bearing on the final grade) dwelves into some topics of great interest in this field that are still under active investigation,not just because of technical difficulties in the mathematical analysis, but also because essential features are not properly understood at all.
ments the course material and provides feedback for the homework assignments. An optional research seminar (with no bearing on the final grade) dwelves into some topics of great interest in this field that are still under active investigation,not just because of technical difficulties in the mathematical analysis, but also because essential features are not properly understood at all.
Literatur
In addition to lecture notes that will be regularly provided, we recommand the following books
1. R. Johnson, A modern introduction to the mathematical theory of water
waves, Cambridge University Press, Cambridge, 1997.
2. P. Drazin and R. Johnson, Solitons: an introduction, Cambridge University
Press, Cambridge, 1989.
3. A. Majda and A. Bertozzi, Vorticity and incompressible ow, Cambridge
University Press, Cambridge, 2002.
1. R. Johnson, A modern introduction to the mathematical theory of water
waves, Cambridge University Press, Cambridge, 1997.
2. P. Drazin and R. Johnson, Solitons: an introduction, Cambridge University
Press, Cambridge, 1989.
3. A. Majda and A. Bertozzi, Vorticity and incompressible ow, Cambridge
University Press, Cambridge, 2002.
Zuordnung im Vorlesungsverzeichnis
MANV
Letzte Änderung: Mo 07.09.2020 15:40