Universität Wien FIND
Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.

250014 VO Lineare Algebra und Geometrie 2 (2015W)

3.00 ECTS (2.00 SWS), SPL 25 - Mathematik

An/Abmeldung

Details

Sprache: Deutsch

Prüfungstermine

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Montag 05.10. 09:45 - 12:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Montag 12.10. 09:45 - 12:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Montag 19.10. 09:45 - 12:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Montag 09.11. 09:45 - 12:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Montag 16.11. 09:45 - 12:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Montag 23.11. 09:45 - 12:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Montag 30.11. 09:45 - 12:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Montag 07.12. 09:45 - 12:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Montag 14.12. 09:45 - 12:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Montag 11.01. 09:45 - 12:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Montag 18.01. 09:45 - 12:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Normalformen: Triangulierbarkeit linearer Abbildungen, Satz von Cayley-Hamilton, Algebra von Polynomringen, Primärzerlegung, nilpotente lineare Abbildungen, Jordan-Zerlegung und Jordan`sche Normalform.
Multilineare Algebra: Tensorprodukte von Vektorräumen, universelle Eigenschaft, Kontraktionen und Tensorkalkül, symmetrische und alternierende multilinerare Abbildungen, symmetrische und äußere Potenzen, äußere Algebra, eventuell Clifford-Algebren.

Art der Leistungskontrolle und erlaubte Hilfsmittel

schriftliche und/oder mündliche Prüfung nach Ende der Lehrveranstaltung

Mindestanforderungen und Beurteilungsmaßstab

Die Studierenden entwickeln ein solides Verständnis für fortgeschrittene Themen der linearen Algebra und Grundbegriffe der multilinearen Algebra. Sie verstehen die Rolle der algebraischen Theorie von Polynomringen in der Beschreibung linearer Abbildungen und können Jordan'sche Normalformen sowohl theoretisch als auch praktisch nutzen. Sie kennen Tensoren und ihre Verbindung zu multiniearen Abbildungen, insbesondere im Fall von alternierenden Multilinearformen.

Prüfungsstoff

Vorlesung

Literatur

Skriptum wird online unter http://www.mat.univie.ac.at/~cap/lectnotes.html verfügbar sein

Zuordnung im Vorlesungsverzeichnis

LAG

Letzte Änderung: Do 05.09.2019 12:56