250016 VO Mathematical Finance (Continuous Time) (2025S)
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
Details
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
The lectures on monday will start only at 9:00.
- Montag 03.03. 08:00 - 09:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 05.03. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 17.03. 08:00 - 09:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 19.03. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 26.03. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 31.03. 08:00 - 09:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 02.04. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 09.04. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 28.04. 08:00 - 09:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 30.04. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 07.05. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 12.05. 08:00 - 09:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 14.05. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 21.05. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 26.05. 08:00 - 09:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 28.05. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 04.06. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 11.06. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 18.06. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
- N Montag 23.06. 08:00 - 09:30 Seminarraum 12 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 25.06. 13:15 - 14:45 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Only a final exam. Depending on the size of the class, either oral or written (closed book) exam.
Mindestanforderungen und Beurteilungsmaßstab
Prüfungsstoff
The material from the lectures.
Literatur
For the elements of discrete time stochastic processes / mathematical finance, you may consult the book 'Stochastic Finance' by Föllmer and Schied.
For continuous time processes / finance, good references are 'Introduction to stochastic calculus applied to finance' by Lamberton and Lapeyre, 'Stochastic calculus for finance II: continuous-time modelr' by Shreve, or 'Arbitrage theory in continuous time' by Björk.
For continuous time processes / finance, good references are 'Introduction to stochastic calculus applied to finance' by Lamberton and Lapeyre, 'Stochastic calculus for finance II: continuous-time modelr' by Shreve, or 'Arbitrage theory in continuous time' by Björk.
Zuordnung im Vorlesungsverzeichnis
MSTV
Letzte Änderung: Fr 28.02.2025 16:46
* Fundamental aspects of continuous time mathematical finance: trading, super/sub hedging, replication, pricing of options, martingale measures, no-arbitrage, the fundamental theorem of asset pricing, market completeness, Black-Scholes formula, hedging within the Black-Scholes model, exotic options, model calibration given option prices, etc. If time permits we will cover stochastic optimal control problems in finance, such as utility maximization.
We will start the lecture with a brief introduction to discrete time stochastic processes and discrete time mathematical finance. Then we introduce the necessary machinery from continuous time stochastic processes. We apply this machinery towards building a continuous time theory of mathematical finance.