Universität Wien

250019 VO Komplexe Analysis (2021W)

3.00 ECTS (2.00 SWS), SPL 25 - Mathematik
DIGITAL

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

Sprache: Deutsch

Prüfungstermine

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Montag 04.10. 11:30 - 13:00 Digital
    Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 11.10. 11:30 - 13:00 Digital
    Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 18.10. 11:30 - 13:00 Digital
    Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 25.10. 11:30 - 13:00 Digital
    Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 08.11. 11:30 - 13:00 Digital
    Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 15.11. 11:30 - 13:00 Digital
    Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 22.11. 11:30 - 13:00 Digital
    Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 29.11. 11:30 - 13:00 Digital
    Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 06.12. 11:30 - 13:00 Digital
    Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 13.12. 11:30 - 13:00 Digital
    Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 10.01. 11:30 - 13:00 Digital
    Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 17.01. 11:30 - 13:00 Digital
    Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 24.01. 11:30 - 13:00 Digital
    Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 31.01. 11:30 - 13:00 Digital
    Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Komplexe Zahlen, holomorphe Funktionen, die Cauchy-Riemann'schen Differentialgleichungen, Potenzreihen, Kurvenintegrale, Windungszahlen, der Cauchy'sche Integralsatz und die Cauchy'sche Integralformel, Entwicklung der holomorphen Funktionen in Potenzreihen, der Identitätssatz, Nullstellen und Singularitäten, der Mittelwertsatz und das Maximumprinzip, Cauchy'schen Abschätzungen und der Satz von Liouville, und, soweit die Umstände das erlauben, auch: Laurentreihen, Residuensatz und Anwendungen

Art der Leistungskontrolle und erlaubte Hilfsmittel

Schriftliche Prüfung am Ende der Vorlesung, oder, falls eine Prüfung mit physischer Präsenz nicht möglich sein wird, schriftliche online Prüfung.

Mindestanforderungen und Beurteilungsmaßstab

50% der bei der schriftlichen Prüfung erreichbaren Punkte sind für eine positive Note ausreichend.

Prüfungsstoff

Alle in der Vorlesung behandelten Inhalte.

Literatur

Die handgeschriebenen Vorlesungsnotizen werden auf Moodle zur Verfügung gestellt.

(1) F. Haslinger, Komplexe Analysis, Skriptum,
http://www.mat.univie.ac.at/%7Ehas/complex/scriptumII.pdf

(2) W. Rudin, Real and complex analysis, McGraw-Hill Book Co., 1987.

(3) S. Lang, Complex Analysis, Springer Verlag, 1999.

(4) R. Remmert and G. Schumacher, Funktionentheorie 1, Springer 2002.

(5) I. Stewart, D. Tall, Complex Analysis, Cambridge University Press, 2004.

Zuordnung im Vorlesungsverzeichnis

KAN, UFMAMA02

Letzte Änderung: Sa 30.11.2024 00:15