Universität Wien
Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.

250030 VO Homological Algebra (2024S)

3.00 ECTS (2.00 SWS), SPL 25 - Mathematik

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

Sprache: Englisch

Prüfungstermine

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Mittwoch 06.03. 15:00 - 16:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Mittwoch 13.03. 15:00 - 16:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Mittwoch 20.03. 15:00 - 16:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Mittwoch 10.04. 15:00 - 16:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Mittwoch 17.04. 15:00 - 16:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Mittwoch 24.04. 15:00 - 16:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Donnerstag 02.05. 15:00 - 16:30 Seminarraum 4 Oskar-Morgenstern-Platz 1 1.Stock
  • Mittwoch 08.05. 15:00 - 16:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Mittwoch 15.05. 15:00 - 16:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Mittwoch 22.05. 15:00 - 16:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Mittwoch 29.05. 15:00 - 16:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Mittwoch 05.06. 15:00 - 16:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Mittwoch 12.06. 15:00 - 16:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Mittwoch 19.06. 15:00 - 16:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Mittwoch 26.06. 15:00 - 16:30 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Donnerstag 27.06. 15:00 - 16:30 Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Stock

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Homological Algebra has its cources in works of Poincare and Hilbert. Poincare in his investigations of topological
spaces introduced homology groups which he obtained from simplicial complexes attached to the topological space.
Hilbert following his solution of the basis problem (Hilbert basis Theorem) and with the aim to make his solution
explicit introduced resolutions of ideals in polynomial rings which again are certain complexes.

The idea of investigating objects by looking at resolutions turned out to be a general abstract principle with wide applications in mathematics.
Homological Algebra is the study of this principle in a general and abstract setting. In fact Homological algebra can be
formulated and applied in arbitrary abelian categories and it may be seen as the study of abelian categories and their functors.

In the course we want to explain the abstract principle and touch on some of the techniques for computing (Co)Homolgy of
objects.

Prerequisites are very basic knowledge of modules (definition, morphisms, Sub- and Quotient modules,...) and of categories
(essentially the definition of category and functor will suffice; if we need more we will review this material).

Art der Leistungskontrolle und erlaubte Hilfsmittel

Oral exam

Mindestanforderungen und Beurteilungsmaßstab

To pass the oral exam

Prüfungsstoff

The content of the lecture course

Literatur

Weibel, C.: An Introduction to Homological Algebra
Gelfand, S., Manin, Y.: Methods of Homological Algebra
Hilton, P., Stammbach, U.: A course in Homological Algebra
Kato, G.: The Heart of Cohomology
MacLane, S.: Homology
Rotman, J.: An Introduction to Homological Algebra
Cartan, H., Eilenberg, S.: Homological Algebra

Zuordnung im Vorlesungsverzeichnis

MALV

Letzte Änderung: Do 05.12.2024 08:06