Universität Wien FIND

Auf Grund der COVID-19 Pandemie kann es bei Lehrveranstaltungen und Prüfungen auch kurzfristig zu Änderungen kommen. Informieren Sie sich laufend in u:find und checken Sie regelmäßig Ihre E-Mails.

Lesen Sie bitte die Informationen auf https://studieren.univie.ac.at/info.

250031 VU Modelling Interacting Particle Systems in Science (2021S)

7.00 ECTS (4.00 SWS), SPL 25 - Mathematik
Prüfungsimmanente Lehrveranstaltung


Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").


max. 25 Teilnehmer*innen
Sprache: Englisch


Termine (iCal) - nächster Termin ist mit N markiert

Donnerstag 04.03. 12:45 - 16:00 Digital
Donnerstag 11.03. 12:45 - 16:00 Digital
Donnerstag 18.03. 12:45 - 16:00 Digital
Donnerstag 25.03. 12:45 - 16:00 Digital
Donnerstag 15.04. 12:45 - 16:00 Digital
Donnerstag 22.04. 12:45 - 16:00 Digital
Donnerstag 29.04. 12:45 - 16:00 Digital
Donnerstag 06.05. 12:45 - 16:00 Digital
Donnerstag 20.05. 12:45 - 16:00 Digital
Donnerstag 27.05. 12:45 - 16:00 Digital
Donnerstag 10.06. 12:45 - 16:00 Digital
Donnerstag 17.06. 12:45 - 16:00 Digital
Donnerstag 24.06. 12:45 - 16:00 Digital


Ziele, Inhalte und Methode der Lehrveranstaltung

The goal of this course is for students to learn how to model systems constituted by many particles. These systems can correspond, among many, to collective dynamics (flocking, pedestrian dynamics), opinion formation, cell dynamics, gas dynamics,...
Modelling requires knowledge from a wide variety of mathematical fields (particularly, probability and differential equations). This course will teach the basics needed. It will also show what constitutes a "good" mathematical model.
During the course the models presented in research papers will be read and analysed. By the end of the course, students should be able to understand the meaning of the models presented in these papers as well as being able to propose their own.
Topics covered include:
- modelling using Markov Chains, Markov Processes and Piece-wise Deterministic Markov Processes;
- modelling using Stochastic Differential Equations;
- modelling using Ordinary Differential Equations; Newton's law; minimisation of potential;
- computational models;
- derivation of partial differential equations (transport equations),
- simulation of some of the particle models.

The class will combine theory, exercises and simulations. For the simulations, we will work with Jupyter notebooks and use Julia programming language (all of this will be explained in the course so no previous knowledge of Julia and Jupyter are needed). The course will also be based on reading and understanding models directly from research papers.

To install Julia (with Atom and Juno), follow the instructions here:
(it is free)

Art der Leistungskontrolle und erlaubte Hilfsmittel

This is a practical course, so attendance is compulsory, only a maximum of 3 classes can be missed. Evaluation will be based on solving class exercises, class participation, and a final project, which includes a report and a discussion.

Mindestanforderungen und Beurteilungsmaßstab

The course is in English.
Good knowledge of mathematical analysis is required as well as basic knowledge in Probability (concepts like probability space, random variable, probability distribution).
Some basic knowledge of ordinary differential equations.

The part of the course dedicated to numerical simulations of particle systems will use the programming language Julia. There is no need of previous knowledge of Julia. However, some experience in programming is needed.
Also a computer will be needed to be able to implement in Julia.



Zuordnung im Vorlesungsverzeichnis


Letzte Änderung: Do 25.02.2021 17:08