250044 SE Algebra (2024S)
Prüfungsimmanente Lehrveranstaltung
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
- Anmeldung von Do 01.02.2024 00:00 bis Mo 26.02.2024 23:59
- Abmeldung bis So 31.03.2024 23:59
Details
max. 25 Teilnehmer*innen
Sprache: Englisch
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
During the first meeting on Monday 04.03. we will give a brief introduction to the three topics chosen for the seminar and schedule the presentations.
- Montag 04.03. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 11.03. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 18.03. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 08.04. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 15.04. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 22.04. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 29.04. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 06.05. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 13.05. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 27.05. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 03.06. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 10.06. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 17.06. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
- Montag 24.06. 11:30 - 13:00 Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Regular participation to the presentations and presentation of a topic.
Mindestanforderungen und Beurteilungsmaßstab
Prüfungsstoff
Literatur
Will be assigned individually for each topic.
Zuordnung im Vorlesungsverzeichnis
MALS
Letzte Änderung: Mi 31.07.2024 12:06
Dirichlet's Prime Number TheoremThis is a topic form number theory, which describes how the prime numbers are distributed among the invertible classes modulo m. In four lectures, we are going to reprove Dirichlet's theorem that the primes are in fact "equally distributed" among such classes. This implies as a famous corollary that for each pair of coprime natural numbers (m,n), there must be infinitely many prime numbers p, which are congruent to n modulo m. Nevertheless this result is algebraic in its nature, our methods will comprise analytic tools, such as "Dirichlet L-functions", which can be seen as a generalization of the Riemann zeta-function.Topic 2. (J. Mahnkopf)
Topics from Category Theory (for students who have a little background in category theory or are willing to acquire a little background)a.) Freyd's theorem on the existence of adjoint functors: the theorem gives a very general criterion for a functor F to have a left adjoint functor
(note that many theorems from algebra, topology... can be reformulated as the existence of a left adjoint functor which makes this a very general theorem)b.) Introduction to Morita equivalence: two rings are called Morita equivalent iff their respective categories of modules are equivalent (i.e. the rings "have the same representation theory"). The (first) main theorem of Morita Theory is a general criterion for rings to be Morita equivalent
and a description of the equivalence between their module categories. This can be illustrated by typical examples.c.) The embedding Theorem for abelian categories: any abelian category embeds into a category of modules over some ring R.The topics can be prepared by a single student or by two students.Topic 3. (L. Summerer)
Roth's TheoremThis topic is from Diophantine Approximation and focused on Roth's celebrated result about the bound for the quality of approximation of algebraic numbers by rationals. The talks are aimed to shed light on the context of Roth's Theorem along with an outline of the proof, applications of Roth's result and the generalisation towards the subspace Theorem of W. Schmidt.