Universität Wien

250054 VO Probabilistic Models in Biomathematics (2021S)

5.00 ECTS (3.00 SWS), SPL 25 - Mathematik

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").

Details

Sprache: Englisch

Prüfungstermine

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

https://zoom.us/j/9173785622?pwd=VnUzSStFUHVvU3c0YlFqNEZhb29ydz09

ID de réunion : 917 378 5622
Code secret : mE6M9t

  • Montag 01.03. 15:00 - 17:15 Digital
    Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 08.03. 15:00 - 17:15 Digital
    Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 15.03. 15:00 - 17:15 Digital
    Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 22.03. 15:00 - 17:15 Digital
    Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 12.04. 15:00 - 17:15 Digital
    Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 19.04. 15:00 - 17:15 Digital
    Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 26.04. 15:00 - 17:15 Digital
    Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 03.05. 15:00 - 17:15 Digital
    Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 10.05. 15:00 - 17:15 Digital
    Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 17.05. 15:00 - 17:15 Digital
    Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 31.05. 15:00 - 17:15 Digital
    Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 07.06. 15:00 - 17:15 Digital
    Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 14.06. 15:00 - 17:15 Digital
    Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 21.06. 15:00 - 17:15 Digital
    Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 28.06. 15:00 - 17:15 Digital
    Seminarraum 9 Oskar-Morgenstern-Platz 1 2.Stock

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

This class will cover several probabilistic models arising in biomathematics, with a particular focus on population genetics. One of the major challenge of population genetics is the inference of the evolutionary history of a population (or a species) from the observation of its extant genetic diversity. From a mathematical point of view, the approach consists in starting from tractable models in order to make theoretical predictions on the genetic signature of various evolutionary scenarii: natural selection, mutation, demography (i.e. migration, population expansion etc.), pure genetic drift or recombination.
In this course, I will introduce several of the aforementioned probabilistic models and introduce various technics to analyse them. I will start from the Wright-Fisher diffusion(s) describing the evolution of the genetic composition in large populations. I will show that an efficient way to analyse such models relies on the description of their underlying genealogical structure. More precisely, if several individuals are sampled from an extent population, one can trace backward in time the genealogical lines of those individuals. I will show how coalescent theory (Kingman coalescent, $\Lamda$-coalescents) provides an elegant description of this genealogy, and how it allows to draw predictions on the genetic structure of large populations.
If time permits, I will also show how the previous approaches can be carried through in epidemiogy in order to describe a viral expansion (Feller diffusion) and its underlying genealogical structure of such a population (coalescent point processes).
Along the way, I hope to introduce general probabilistic concepts which will be of independent interest : martingales, duality, exchangeability etc.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Mindestanforderungen und Beurteilungsmaßstab

Strong undergraduate probability. Some knowledge on the following topics: Stochastic processes, Markov processes (discrete and continuous time), Brownian motion, diffusions. No knowledge of measure theory will be required.

Art der Leistungskontrolle und erlaubte Hilfsmittel
Two graded home-works will be assigned during the semester. The final exam will be an oral exam (duration to be determined).

Prüfungsstoff

Will be distributed by email.

Literatur

Will be distributed by email

Zuordnung im Vorlesungsverzeichnis

MBIV

Letzte Änderung: Fr 12.05.2023 00:21