Universität Wien

250061 PS Introductory seminar on algebraic number theory (2016W)

2.00 ECTS (1.00 SWS), SPL 25 - Mathematik
Prüfungsimmanente Lehrveranstaltung

Details

Sprache: Englisch

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Montag 10.10. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 17.10. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 24.10. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 31.10. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 07.11. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 14.11. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 21.11. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 28.11. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 05.12. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 12.12. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 09.01. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 16.01. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 23.01. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 30.01. 11:30 - 12:15 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Exercises and examples will be used to deepen the understanding of the material covered in the lectures on algebraic number theory. The aim is to transform the students' understanding of basic principles into working knowledge. For further information go to
http://www.mat.univie.ac.at/~baxa/ws1617ant.html

Art der Leistungskontrolle und erlaubte Hilfsmittel

Each week the participants announce beforehand for which exercises they are able to present solutions. The previously prepared solution can be used as an aid during the presentation.

Mindestanforderungen und Beurteilungsmaßstab

Minimum requirements for passing are: solving at least 60% of the exercises, the correct presentation of at least two solutions at the blackboard, and regular participation in discussions. The grade of students who pass is determined in equal parts by the number of exercises solved and the number and quality of the presentations of these solutions.

Prüfungsstoff

The exercises will be available at http://www.mat.univie.ac.at/~baxa/bspeWS1617.pdf

Literatur

S. Alaca, K.S. Williams, Introductory Algebraic Number Theory
D.A. Marcus, Number Fields
W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers
J. Neukirch, Algebraische Zahlentheorie
I. Stewart, D. Tall, Algebraic Number Theory and Fermat's Last Theorem
H.P.F. Swinnerton-Dyer, A Brief Guide to Algebraic Number Theory

Zuordnung im Vorlesungsverzeichnis

MALV

Letzte Änderung: Mo 07.09.2020 15:40