250067 VO Probabilistic Methods in Analysis (2021S)
Labels
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
Details
Sprache: Englisch
Prüfungstermine
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
The lectures on Wednesday, 17.03 and Thursday 18.03 are cancelled. The first lecture will take place on Tuesday, 23.03.
If you want to be sent links to the zoom lectures, please send a request to shahar.mendelson@gmail.comTuesday 23.3.21Shahar Mendelson is inviting you to a scheduled Zoom meeting.Topic: Shahar Mendelson's Zoom Meeting
Time: Mar 23, 2021 10:00 AM ViennaJoin Zoom Meeting
https://us02web.zoom.us/j/86776274746?pwd=T3JJUzZQNmx5NjVkSzdobEFSWFZ0UT09Meeting ID: 867 7627 4746
Passcode: 270000
One tap mobile
+13126266799,,86776274746#,,,,*270000# US (Chicago)
+13462487799,,86776274746#,,,,*270000# US (Houston)Dial by your location
+1 312 626 6799 US (Chicago)
+1 346 248 7799 US (Houston)
+1 669 900 6833 US (San Jose)
+1 929 205 6099 US (New York)
+1 253 215 8782 US (Tacoma)
+1 301 715 8592 US (Washington DC)
Meeting ID: 867 7627 4746
Passcode: 270000
Find your local number: https://us02web.zoom.us/u/kclqG6Gl1GWednesday 24.3.21
Shahar Mendelson is inviting you to a scheduled Zoom meeting.Topic: Shahar Mendelson's Zoom Meeting
Time: Mar 24, 2021 10:00 AM ViennaJoin Zoom Meeting
https://us02web.zoom.us/j/81991128710?pwd=bU9YTTZMblRhb29QL1VUdDBSYWs1QT09Meeting ID: 819 9112 8710
Passcode: 031065
One tap mobile
+16699006833,,81991128710#,,,,*031065# US (San Jose)
+19292056099,,81991128710#,,,,*031065# US (New York)Dial by your location
+1 669 900 6833 US (San Jose)
+1 929 205 6099 US (New York)
+1 253 215 8782 US (Tacoma)
+1 301 715 8592 US (Washington DC)
+1 312 626 6799 US (Chicago)
+1 346 248 7799 US (Houston)
Meeting ID: 819 9112 8710
Passcode: 031065
Find your local number: https://us02web.zoom.us/u/kF4520OZEThursday, 25.3.21Shahar Mendelson is inviting you to a scheduled Zoom meeting.Topic: Shahar Mendelson's Zoom Meeting
Time: Mar 25, 2021 10:00 PM ViennaJoin Zoom Meeting
https://us02web.zoom.us/j/87315642312?pwd=OGZublBoVkVySTJQZmNJaEV3d3NFQT09Meeting ID: 873 1564 2312
Passcode: 632397
One tap mobile
+12532158782,,87315642312#,,,,*632397# US (Tacoma)
+13017158592,,87315642312#,,,,*632397# US (Washington DC)Dial by your location
+1 253 215 8782 US (Tacoma)
+1 301 715 8592 US (Washington DC)
+1 312 626 6799 US (Chicago)
+1 346 248 7799 US (Houston)
+1 669 900 6833 US (San Jose)
+1 929 205 6099 US (New York)
Meeting ID: 873 1564 2312
Passcode: 632397
Find your local number: https://us02web.zoom.us/u/keiX9wEsnH
- Mittwoch 17.03. 10:00 - 12:00 Digital
- Donnerstag 18.03. 10:00 - 12:00 Digital
- Dienstag 23.03. 10:00 - 12:00 Digital
- Mittwoch 24.03. 10:00 - 12:00 Digital
- Donnerstag 25.03. 10:00 - 12:00 Digital
- Mittwoch 14.04. 10:00 - 12:00 Digital
- Donnerstag 15.04. 10:00 - 12:00 Digital
- Dienstag 20.04. 10:00 - 12:00 Digital
- Mittwoch 21.04. 10:00 - 12:00 Digital
- Dienstag 27.04. 10:00 - 12:00 Digital
- Mittwoch 28.04. 10:00 - 12:00 Digital
- Donnerstag 29.04. 10:00 - 12:00 Digital
- Dienstag 04.05. 10:00 - 12:00 Digital
- Mittwoch 05.05. 10:00 - 12:00 Digital
- Donnerstag 06.05. 10:00 - 12:00 Digital
- Dienstag 11.05. 10:00 - 12:00 Digital
- Mittwoch 12.05. 10:00 - 12:00 Digital
- Dienstag 18.05. 10:00 - 12:00 Digital
- Mittwoch 19.05. 10:00 - 12:00 Digital
- Donnerstag 20.05. 10:00 - 12:00 Digital
- Mittwoch 26.05. 10:00 - 12:00 Digital
- Donnerstag 27.05. 10:00 - 12:00 Digital
- Freitag 28.05. 10:00 - 12:00 Digital
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Mindestanforderungen und Beurteilungsmaßstab
Prüfungsstoff
Literatur
Zuordnung im Vorlesungsverzeichnis
MAMV; MANV; MSTV;
Letzte Änderung: Fr 12.05.2023 00:21
I will use the four problems to illustrate the power of the probabilistic method: proving the existence of an object based on some event having a positive measure. Along the way, I will develop the necessary machinery, which is importnat in its own right: it is of constant use in many areas of modern mathematics, statistics and computer science (for example, it is of central importance in data science). To give a flavour of the questions, here is a somewhat inaccurate formulation of two of them:Q1) If X is an infinite dimensional normed space, does X contain finite dimensional subspaces of arbitrarily high dimension that are arbitrarily close to being Euclidean? This question was asked by Grothendieck, and its solution - especially the breakthrough made by V. Milman in the 70's-, has led to the development of Asymptotic Geometric Analysis: the quantitative study of the geometry of high dimensional convex bodies. Q2) Let (X,d) be an arbitrary metric space consisting of n points. How well can X be embedded in a Hilbert space?Here "well" means that the embedding does not distort distances by "too much". We will present Bourgain's result, which shows that any metric space of cardinality n can be embedded in a Hilbert space with distances distorted by a multiplicative factor of at most log(n). Moreover, a distortion of log(n) is the best that one can hope for (actually Bourgain showed a slightly suboptimal lower bound - by a log log(n) factor).Clearly, neither question has "probability" in its formulation, nor is it clear why probability should come into the game at all. As it happens, it is of crucial importance in the solutions.Although I will try to make the course as self-contained as possible, it will require mathematical maturity. Knowledge of some Functional Analysis, measure and integration and probability theory is highly recommended.