250070 VO Riemannian Geometry (2023W)
Labels
VOR-ORT
An/Abmeldung
Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
Details
Sprache: Englisch
Prüfungstermine
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Mittwoch 04.10. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Donnerstag 05.10. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 11.10. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Donnerstag 12.10. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 18.10. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Donnerstag 19.10. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 25.10. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 08.11. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Donnerstag 09.11. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 15.11. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Donnerstag 16.11. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 22.11. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Donnerstag 23.11. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 29.11. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Donnerstag 30.11. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Mittwoch 06.12. 16:45 - 18:15 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
There will be a thorough half hour oral exam.
Mindestanforderungen und Beurteilungsmaßstab
Prüfungsstoff
All material covered in class is examinable.
Literatur
Lecture notes will be provided for large portions of the class.
I recommend the books by do Carmo (Riemannian Geometry), O'Neill (Semi-Riemannian Geometry), and by Petersen (Riemannian Geometry) for supplementary reading. They differ greatly in style and emphasis. For the exam, I ask that you are familiar with the notation and the proofs as given in class and the lecture notes.
The prerequisites are covered well by the lecture notes for »Analysis on Manifolds« as taught in the summer term of 2023. The moodle platform is still active and can be accessed using the same password as for this course.
I recommend the books by do Carmo (Riemannian Geometry), O'Neill (Semi-Riemannian Geometry), and by Petersen (Riemannian Geometry) for supplementary reading. They differ greatly in style and emphasis. For the exam, I ask that you are familiar with the notation and the proofs as given in class and the lecture notes.
The prerequisites are covered well by the lecture notes for »Analysis on Manifolds« as taught in the summer term of 2023. The moodle platform is still active and can be accessed using the same password as for this course.
Zuordnung im Vorlesungsverzeichnis
MGED
Letzte Änderung: Do 26.09.2024 15:46
- Abstract Riemannian Manifolds (including the Levi-Civita connection and curvature)
- Geodesics (including first and second variation of length, Jacobi fields, completeness)
- Applications (including Hopf-Rinow, Bonnet-Myers, Gauss-Bonnet, azimuthal coordinates)
- Elements of comparison geometry (Rauch comparison theorem, Bishop-Gromov volume comparison theorem)We will likely cover additional topics, taking the interests of the audience into account.