250071 VO Höhere Funktionalanalysis (2013S)
Labels
Achtung: voraussichtliche Vorlesungszeit: 9:15-10:55.
Details
Sprache: Deutsch
Prüfungstermine
- Donnerstag 27.06.2013
- Montag 01.07.2013
- Dienstag 30.07.2013
- Mittwoch 21.08.2013
- Dienstag 15.10.2013
- Dienstag 03.12.2013
- Donnerstag 30.01.2014
- Montag 16.06.2014
- Dienstag 22.07.2014
Lehrende
Termine (iCal) - nächster Termin ist mit N markiert
- Dienstag 05.03. 09:00 - 11:00 Hörsaal 1 2A120 1.OG UZA II Geo-Zentrum
- Donnerstag 07.03. 09:00 - 11:00 Seminarraum
- Dienstag 12.03. 09:00 - 11:00 Hörsaal 1 2A120 1.OG UZA II Geo-Zentrum
- Donnerstag 14.03. 09:00 - 11:00 Seminarraum
- Dienstag 19.03. 09:00 - 11:00 Hörsaal 1 2A120 1.OG UZA II Geo-Zentrum
- Donnerstag 21.03. 09:00 - 11:00 Seminarraum
- Dienstag 09.04. 09:00 - 11:00 Hörsaal 1 2A120 1.OG UZA II Geo-Zentrum
- Donnerstag 11.04. 09:00 - 11:00 Seminarraum
- Dienstag 16.04. 09:00 - 11:00 Hörsaal 1 2A120 1.OG UZA II Geo-Zentrum
- Donnerstag 18.04. 09:00 - 11:00 Seminarraum
- Dienstag 23.04. 09:00 - 11:00 Hörsaal 1 2A120 1.OG UZA II Geo-Zentrum
- Donnerstag 25.04. 09:00 - 11:00 Seminarraum
- Dienstag 30.04. 09:00 - 11:00 Hörsaal 1 2A120 1.OG UZA II Geo-Zentrum
- Donnerstag 02.05. 09:00 - 11:00 Seminarraum
- Dienstag 07.05. 09:00 - 11:00 Hörsaal 1 2A120 1.OG UZA II Geo-Zentrum
- Dienstag 14.05. 09:00 - 11:00 Hörsaal 1 2A120 1.OG UZA II Geo-Zentrum
- Donnerstag 16.05. 09:00 - 11:00 Seminarraum
- Donnerstag 23.05. 09:00 - 11:00 Seminarraum
- Dienstag 28.05. 09:00 - 11:00 Hörsaal 1 2A120 1.OG UZA II Geo-Zentrum
- Dienstag 04.06. 09:00 - 11:00 Hörsaal 1 2A120 1.OG UZA II Geo-Zentrum
- Donnerstag 06.06. 09:00 - 11:00 Seminarraum
- Dienstag 11.06. 09:00 - 11:00 Hörsaal 1 2A120 1.OG UZA II Geo-Zentrum
- Donnerstag 13.06. 09:00 - 11:00 Seminarraum
- Dienstag 18.06. 09:00 - 11:00 Hörsaal 1 2A120 1.OG UZA II Geo-Zentrum
- Donnerstag 20.06. 09:00 - 11:00 Seminarraum
- Dienstag 25.06. 09:00 - 11:00 Hörsaal 1 2A120 1.OG UZA II Geo-Zentrum
- Donnerstag 27.06. 09:00 - 11:00 Seminarraum
Information
Ziele, Inhalte und Methode der Lehrveranstaltung
Art der Leistungskontrolle und erlaubte Hilfsmittel
Schriftliche und/oder muendliche Pruefung. Der Pruefungsmodus richtet sich nach der Hoererzahl. Termine werden während des Semesters bekanntgegeben.
Mindestanforderungen und Beurteilungsmaßstab
Voraussetzungen: gute Kenntnisse der Funktionalanalysis aus dem Bachelorstudium, Lebesgue-Integral auf jeden Fall wuenschenswert.
Prüfungsstoff
Literatur
Literatur: Ich werde werde mich hauptsächlich an den Büchern von Conway und Rudin halten.Conway, John B. A course in functional analysis. Second edition. Graduate Texts in Mathematics, 96.
Ausgezeichnetes Buch, klar und verständlich geschrieben, guter Aufbau, viel Material, interessante Uebungen.Rudin, Walter Functional analysis. Second edition. International Series in Pure and Applied Mathematics.
Ein Klassiker. Beginnt ganz abstrakt und auf sehr hohem Niveau, für Anfänger noch nicht ganz geeignet.Reed, Michael; Simon, Barry Methods of modern mathematical physics. I. Functional analysis. Academic Press, New York-London, 1972. Funktionalanalysis im Hinblick auf die Anwendungen in der Physik. Ausgezeichnet geschrieben.Peter Lax, Functional Analysis (sehr gutes Buch, enthaelt abwechselnd Theorie und Anwendungskapitel.Die Bücher von Dunford und Schwartz und von Riesz und Nagy sollte jeder kennen, sind aber zum Lernen nicht geeignet.Empfehlenswerte, Bücher in deutscher Sprache mit unkonventionellem Aufbau.
Heuser, Harro Funktionalanalysis
Hans Wilhelm Alt, Lineare Funktionalanalysis. Eine anwendungsorientierte Einführung.
Springer-Lehrbuch 2012
Ausgezeichnetes Buch, klar und verständlich geschrieben, guter Aufbau, viel Material, interessante Uebungen.Rudin, Walter Functional analysis. Second edition. International Series in Pure and Applied Mathematics.
Ein Klassiker. Beginnt ganz abstrakt und auf sehr hohem Niveau, für Anfänger noch nicht ganz geeignet.Reed, Michael; Simon, Barry Methods of modern mathematical physics. I. Functional analysis. Academic Press, New York-London, 1972. Funktionalanalysis im Hinblick auf die Anwendungen in der Physik. Ausgezeichnet geschrieben.Peter Lax, Functional Analysis (sehr gutes Buch, enthaelt abwechselnd Theorie und Anwendungskapitel.Die Bücher von Dunford und Schwartz und von Riesz und Nagy sollte jeder kennen, sind aber zum Lernen nicht geeignet.Empfehlenswerte, Bücher in deutscher Sprache mit unkonventionellem Aufbau.
Heuser, Harro Funktionalanalysis
Hans Wilhelm Alt, Lineare Funktionalanalysis. Eine anwendungsorientierte Einführung.
Springer-Lehrbuch 2012
Zuordnung im Vorlesungsverzeichnis
MANF
Letzte Änderung: Do 31.10.2024 00:15
Themen:
Schwache Topologien
Banachalgebren und C*-Algebren
Spektralsatz fuer selbstadjungierte Operatoren
Unbeschraenkte Operatoren
Einige Anwendungen