Universität Wien
Achtung! Das Lehrangebot ist noch nicht vollständig und wird bis Semesterbeginn laufend ergänzt.

250082 PS Numerische Mathematik (2022W)

4.00 ECTS (2.00 SWS), SPL 25 - Mathematik
Prüfungsimmanente Lehrveranstaltung
VOR-ORT

Zusammenfassung

1 Ehler , Moodle
2 Lerma Pineda , Moodle
4 Kazeev , Moodle

An/Abmeldung

Hinweis: Ihr Anmeldezeitpunkt innerhalb der Frist hat keine Auswirkungen auf die Platzvergabe (kein "first come, first served").
An/Abmeldeinformationen sind bei der jeweiligen Gruppe verfügbar.

Gruppen

Gruppe 1

max. 25 Teilnehmer*innen
Sprache: Deutsch
Lernplattform: Moodle

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Freitag 07.10. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Freitag 14.10. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Freitag 21.10. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Freitag 28.10. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Freitag 04.11. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Freitag 11.11. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Freitag 18.11. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Freitag 25.11. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Freitag 02.12. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Freitag 09.12. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Freitag 16.12. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Freitag 13.01. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Freitag 20.01. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock
  • Freitag 27.01. 16:45 - 18:15 Seminarraum 8 Oskar-Morgenstern-Platz 1 2.Stock

Gruppe 2

max. 25 Teilnehmer*innen
Sprache: Englisch
Lernplattform: Moodle

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Dienstag 04.10. 08:00 - 09:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 11.10. 08:00 - 09:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 18.10. 08:00 - 09:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 25.10. 08:00 - 09:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 08.11. 08:00 - 09:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 15.11. 08:00 - 09:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 22.11. 08:00 - 09:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 29.11. 08:00 - 09:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 06.12. 08:00 - 09:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 13.12. 08:00 - 09:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 10.01. 08:00 - 09:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 17.01. 08:00 - 09:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 24.01. 08:00 - 09:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Dienstag 31.01. 08:00 - 09:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock

Gruppe 3

max. 25 Teilnehmer*innen
Sprache: Deutsch
Lernplattform: Moodle

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

Am 11. Jänner 2023 findet KEINE Einheit statt.
Zusatztermine am
Donnerstag, 27.10.2022, 9:45-11:15 Uhr,
Donnerstag, 3.11.2022, 9:45-11:15 Uhr.
Diese Termine finden online über Zoom statt, siehe Moodle-Seite.

  • Mittwoch 05.10. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Mittwoch 12.10. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Mittwoch 19.10. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Mittwoch 09.11. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Mittwoch 16.11. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Mittwoch 23.11. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Mittwoch 30.11. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Mittwoch 07.12. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Mittwoch 14.12. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Mittwoch 11.01. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Mittwoch 18.01. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Mittwoch 25.01. 13:15 - 14:45 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock

Gruppe 4

max. 25 Teilnehmer*innen
Sprache: Englisch
Lernplattform: Moodle

Lehrende

Termine (iCal) - nächster Termin ist mit N markiert

  • Montag 03.10. 15:00 - 16:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 10.10. 15:00 - 16:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 17.10. 15:00 - 16:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 24.10. 15:00 - 16:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 31.10. 15:00 - 16:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 07.11. 15:00 - 16:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 14.11. 15:00 - 16:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 21.11. 15:00 - 16:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 28.11. 15:00 - 16:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 05.12. 15:00 - 16:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 12.12. 15:00 - 16:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 09.01. 15:00 - 16:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 16.01. 15:00 - 16:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 23.01. 15:00 - 16:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Montag 30.01. 15:00 - 16:30 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock

Information

Ziele, Inhalte und Methode der Lehrveranstaltung

Die Veranstaltung illustriert die Konzepte der Vorlesung Numerische Mathematik und vermittelt die praktische Implementierung der numerischen Methoden in der Programmiersprache Julia.

Art der Leistungskontrolle und erlaubte Hilfsmittel

Es werden „Beispiele“ zur selbstständigen Ausarbeitung auf die Moodle Vorlesungsseite gestellt, die dann vor dem PS-Termin „angekreuzt“ werden können, was bedeutet, dass sie präsentiert werden können (freiwillig oder aufgerufen). Es besteht Anwesenheitspflicht.

Mindestanforderungen und Beurteilungsmaßstab

Für eine positive Note sind aktiv zur Lösung der Beispiele beizutragen, mehr als 50% der Beispiele anzukreuzen, und mindestens 2 der vorgetragenen Beispiele müssen positiv bewertet werden.

Prüfungsstoff

Die gesamten veröffentlichten Beispiele.

Literatur

siehe Literaturliste der Vorlesung

Zuordnung im Vorlesungsverzeichnis

NUM

Letzte Änderung: Di 10.01.2023 11:11